
Detecting Derivative Malware Samples using
Deobfuscation-assisted Similarity Analysis

Submitted in fulfilment

of the requirements for the degree of

Master of Science

of Rhodes University

Peter Mark Wrench

Grahamstown, South Africa

March 10, 2016

Abstract

The overwhelming popularity of PHP as a hosting platform has made it the language of choice for developers

of Remote Access Trojans (RATs or web shells) and other malicious software. These shells are typically used

to compromise and monetise web platforms by providing the attacker with basic remote access to the system,

including file transfer, command execution, network reconnaissance, and database connectivity. Once infected,

compromised systems can be used to defraud users by hosting phishing sites, performing Distributed Denial of

Service attacks, or serving as anonymous platforms for sending spam or other malfeasance.

The vast majority of these threats are largely derivative, incorporating core capabilities found in more established

RATs such as c99 and r57. Authors of malicious software routinely produce new shell variants by modifying the

behaviours of these ubiquitous RATs, either to add desired functionality or to avoid detection by signature-based

detection systems. Once these modified shells are eventually identified (or additional functionality is required),

the process of shell adaptation begins again. The end result of this iterative process is a web of separate but

related shell variants, many of which are at least partially derived from one of the more popular and influential

RATs.

In response to the problem outlined above, the author set out to design and implement a system capable of

circumventing common obfuscation techniques and identifying derivative malware samples in a given collection.

To begin with, a decoder component was developed to syntactically deobfuscate and normalise PHP code by

detecting and reversing idiomatic obfuscation constructs, and to apply uniform formatting conventions to all

system inputs. A unified malware analysis framework, called Viper, was then extended to create a modular

similarity analysis system comprised of individual feature extraction modules, modules responsible for batch

processing, a matrix module for comparing sample features, and two visualisation modules capable of generating

visual representations of shell similarity.

The principal conclusion of the research was that the deobfuscation performed by the decoder component prior

to analysis dramatically improved the observed levels of similarity between test samples. This in turn allowed the

modular similarity analysis system to identify derivative clusters (or families) within a large collection of shells

more accurately. Techniques for isolating and re-rendering these clusters were also developed and demonstrated to

be effective at increasing the amount of detail available for evaluating the relative magnitudes of the relationships

within each cluster.

Acknowledgements

During the course of this research, I was privileged to work with and enjoy the support of my

supervisor, Professor Barry Irwin, without whose knowledge and guidance this project would

never have reached completion.

I am also deeply and variously indebted to the following people: Dr Karen Bradshaw for her

thorough editing, the Department of Computer Science at Rhodes University for the use of their

excellent equipment and facilities, and to my family for their unwavering love and support.

Thanks must also go to the team behind the VirusTotal online analysis service for allowing me

to source malware samples from their private API. Without these samples, the scope and impact

of this research would have been greatly reduced.

Finally, I wish to acknowledge the financial support of Telkom, Tellabs, Stortech, Genband,

Easttel, Bright Ideas 39 and THRIP through the Telkom Centre of Excellence in the Department

of Computer Science at Rhodes University.

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Goals . 2

1.3 Scope . 3

1.4 Previous Publications . 3

1.5 Thesis Structure . 4

2 Background and Previous Work 5

2.1 PHP Overview . 6

2.1.1 Language Features . 6

2.1.2 Performance and Use . 7

2.1.3 Security . 7

2.2 Remote Access Trojans . 8

2.2.1 Purpose and Use . 8

2.2.2 Language and Structure . 9

2.2.3 Common Capabilities . 9

2.2.4 Delivery Vectors . 11

2.3 Code Obfuscation . 11

i

CONTENTS ii

2.4 Methods of Obfuscation . 12

2.4.1 Layout Obfuscation . 12

2.4.2 Data Obfuscation . 13

2.4.3 Control Obfuscation . 14

2.5 Deobfuscation Techniques . 16

2.5.1 Pattern Matching . 16

2.5.2 Program Slicing . 16

2.5.3 Statistical Analysis . 16

2.5.4 Partial Evaluation . 17

2.6 Code Obfuscation and PHP . 17

2.7 VirusTotal . 18

2.7.1 Public API . 18

2.7.2 Private API . 19

2.8 Parsing and Lexical Analysis . 19

2.8.1 Tokenizer Extension . 20

2.8.2 PHP-Parser . 20

2.9 Similarity Analysis . 21

2.9.1 Signature Matching . 21

2.9.2 Pattern Matching . 21

2.9.3 API Hooking . 21

2.9.4 Cryptographic versus Approximate Hashing 22

2.10 The Ssdeep Fuzzy Hashing Algorithm . 22

2.10.1 Piecewise Hashes . 22

2.10.2 Rolling Hashes . 23

CONTENTS iii

2.10.3 Context-Triggered Piecewise Hashing . 23

2.10.4 Comparing Hashes and the Blocksize Limitation 23

2.10.5 Pydeep . 24

2.11 Data Visualisation . 24

2.11.1 Similarity Matrices . 25

2.11.2 Heatmaps . 25

2.11.3 Dendrograms . 27

2.11.4 Data Visualisation Tools . 27

2.12 Related Work – Deobfuscation and Normalisation 29

2.12.1 LOCO: An Interactive Code (De)obfuscation Tool 29

2.12.2 Deobfuscator: An Automated Control Flow Simplifier 30

2.12.3 A Malware Transformer to Improve Detection Rates 30

2.12.4 Summary . 31

2.13 Related Work – Malware Similarity Analysis . 31

2.13.1 BitShred: Scalable Malware Analysis using Feature Hashing 31

2.13.2 Vilo: Code Reuse Detection using N-gram and N-perm Analysis 32

2.13.3 SAVE and MEDiC: Malware Detection using API and Assembly Calls . . 32

2.13.4 Medusa: Dynamic Malware Analysis using API Signatures 32

2.13.5 Summary . 33

2.14 Chapter Summary . 33

CONTENTS iv

3 Design and Implementation 34

3.1 System Structure . 35

3.2 Download Scripts . 36

3.2.1 Fetch . 37

3.2.2 Download . 37

3.3 Decoder . 37

3.3.1 decode() . 39

3.3.2 processEvals() . 41

3.3.3 processPregReplace() . 42

3.3.4 normalise() . 43

3.3.5 writeStats() . 44

3.4 Viper Framework . 45

3.4.1 Projects . 45

3.4.2 Sessions . 46

3.4.3 Database . 47

3.4.4 Commands . 48

3.4.5 Modules . 49

3.5 Individual Modules . 50

3.5.1 FunctionBodies.py . 52

3.5.2 Functions.py . 53

3.5.3 HashChunks.py . 54

3.5.4 HtmlDump.py . 56

3.6 Batch Modules . 57

3.7 Matrix Module . 58

CONTENTS v

3.7.1 Preliminary Setup . 59

3.7.2 Matrix Creation . 60

3.7.3 Comparison Functions . 62

3.7.4 Validation Functions . 65

3.8 Visualisation Modules . 66

3.8.1 Heatmap.py . 67

3.8.2 Dendrogram.py . 68

3.9 Chapter Summary . 69

4 Results 71

4.1 Test Data . 71

4.2 Decoder Tests . 73

4.2.1 Single-level Eval() and Base64 decode() 74

4.2.2 Eval() with Auxiliary Functions . 75

4.2.3 Single-level Preg Replace() . 75

4.2.4 Multi-level Obfuscation with Auxiliary Functions 76

4.2.5 Full Shell Test . 77

4.3 Obfuscation Statistics . 78

4.4 Individual Module Tests . 79

4.4.1 Functions.py . 80

4.4.2 FunctionBodies.py . 81

4.4.3 HashChunks.py . 82

4.4.4 HtmlDump.py . 83

4.5 Batch Module Performance . 83

CONTENTS vi

4.6 Similarity Analysis Case Study: The c99 Family of Shells 85

4.6.1 Function Name Similarity . 86

4.6.2 Function Body Similarity . 87

4.6.3 Hashed Chunks Similarity . 93

4.6.4 HTML Similarity . 96

4.6.5 Summary . 101

4.7 Comprehensive Tests . 102

4.7.1 Heatmap Cluster Identification and Deobfuscation 104

4.7.2 Dendrogram Relationship Identification 104

4.7.3 Summary . 109

4.8 Evaluation of Similarity Measures . 110

4.9 Chapter Summary . 111

5 Conclusion 112

5.1 Secondary Outcomes . 115

5.2 Limitations . 116

5.3 Future Work . 117

Glossary 118

A Antivirus Engines Aggregated by VirusTotal 131

B Modules developed for the Viper Malware Analysis Framework 132

C Code Availability 133

List of Figures

2.1 Interface of a derivative of the popular c99 shell 10

2.2 Example of a simple similarity matrix . 25

2.3 Simple heatmap based on the similarity matrix in Figure 2.2 26

2.4 Original and annotated dendrograms based on the similarity matrix in Figure 2.2 28

3.1 System structure . 36

3.2 Class diagram for the decoder component . 40

3.3 Opening an existing project using Viper . 46

3.4 Listing and switching between different projects using Viper 47

3.5 Listing and switching between different sessions using Viper 48

3.6 Example of the help dialogue for the Dendrogram.py visualisation module 52

3.7 Comparing files of unequal length . 63

3.8 Illustration of cross-chunk similarity . 64

3.9 Request for a function name matrix when the ‘functions_all -r’ command

has yet to be run . 67

4.1 Histogram of file sizes for the test collection . 73

4.2 GUI of a derivative of the popular c99 shell . 74

4.3 Frequencies of auxiliary string manipulation functions within eval() constructs 79

4.4 Administrative GUI for the r57 test shell . 84

vii

LIST OF FIGURES viii

4.5 Function name similarity between raw c99 derivatives 88

4.6 Function name similarity between decoded c99 derivatives 89

4.7 Function body similarity between raw c99 derivatives 91

4.8 Function body similarity between decoded c99 derivatives 92

4.9 Hashed chunk similarity between raw c99 derivatives 94

4.10 Hashed chunk similarity between decoded c99 derivatives 95

4.11 Extract from the GUI of the v1 shell sample . 97

4.12 Generated HTML similarity between c99 derivatives 98

4.13 Interfaces of the bd, c99, locus, and ud shell samples 100

4.14 Interfaces of the mad1 and mad2 shell samples 101

4.15 Heatmap based on the function names extracted from decoded shells 103

4.16 Similarity heatmap based on the function names extracted from a random selec-

tion of 150 raw shells . 105

4.17 Focused similarity heatmap based on the cluster identified in Figure 4.16 105

4.18 Similarity heatmap based on decoded version of the samples shown in Figure 4.17 106

4.19 Dendrogram based on the function names extracted from 1000 decoded shells . . 107

4.20 Focused dendrogram based on cluster X in Figure 4.19 108

4.21 Focused dendrogram based on cluster Y in Figure 4.19 108

4.22 Focused dendrogram based on cluster Z in Figure 4.19 109

List of Tables

2.1 Summary of VirusTotal’s public API calls . 19

2.2 Summary of VirusTotal’s private API calls . 20

2.3 Pydeep wrapper functions . 24

3.1 Auxiliary string manipulation functions handled by processEvals() 41

3.2 Attributes of a __session__ object in Viper 48

3.3 Viper’s core commands . 49

3.4 Individual modules and their descriptions . 51

3.5 Batch modules and their descriptions . 58

3.6 Possible option combinations for Matrix.py . 59

3.7 Validation functions and their associated error messages 68

4.1 Sample source breakdown . 72

4.2 Obfuscation statistics for the samples described in Section 4.1 78

4.3 Function names extracted from the r57 test shell 82

4.4 Batch module performance . 83

4.5 Case study samples . 86

4.6 Batch modules similarity statistics for raw samples 110

4.7 Batch modules similarity statistics for decoded samples 110

ix

List of Listings

2.1 Simple PHP web shell . 9

2.2 URL targeting the shell in Listing 2.1 . 9

3.1 Parameterised VirusTotal fetch query . 37

3.2 Fetch.py extract demonstrating the hash retrieval loop 38

3.3 Parameterised VirusTotal download query . 39

3.4 Download.py extract showing the file retrieval and storage loop 39

3.5 Psuedo-code for the decode() function . 40

3.6 Psuedo-code for the processEvals() function 42

3.7 Psuedo-code for the processPregReplace() function 43

3.8 Decode.php extract showing the implementation of the normalise() function . 44

3.9 Decode.php extract showing the implementation of the writeStats() function 45

3.10 Decode.py extract demonstrating the use of the is_set() function 49

3.11 Decode All.py extract demonstrating the use of the find() function 50

3.12 Structure of a generic Viper module . 50

3.13 List of arguments passed to the check_output() function 51

3.14 Code extract demonstrating the retrieval of the root Viper path and sample path 52

3.15 FunctionBodies.py extract demonstrating the interaction with the FunctionBod-

ies.php helper script . 53

x

LIST OF LISTINGS xi

3.16 Psuedo-code describing the logic implemented in the FunctionBodies.php helper

script . 54

3.17 Functions.py extract demonstrating the interaction with the Functions.php helper

script . 55

3.18 Psuedo-code describing the logic implemented in the Functions.php helper script . 55

3.19 HashChunks.py extract demonstrating how each sample is separated and hashed . 56

3.20 HtmlDump.py extract demonstrating the interaction with the HtmlDump.php helper

script . 56

3.21 HtmlDump.php extract demonstrating the output buffering process 57

3.22 Implementation of the all_decoded() function 58

3.23 Matrix.py extract demonstrating the preliminary setup tasks 60

3.24 Matrix.py extract demonstrating matrix creation for the ‘-b raw’ option com-

bination . 61

3.25 Signature and implementation of the compare_chunks() function 62

3.26 Signature and implementation of the compare_funcs() function 65

3.27 Signature and implementation of the compare_bodies() function 66

3.28 Signature and implementation of the compare_html() function 67

3.29 Implementation of the all_bodies_raw() validation function 68

3.30 Implementation of the draw_heatmap() function 69

3.31 Implementation of the draw_heatmap() function 70

4.1 Single-level eval() with a base64-encoded argument 74

4.2 Expected decoder output with the script in Listing 4.1 as input 75

4.3 Single-level eval() with multiple auxiliary functions 75

4.4 Extract of the expected decoder output with the script in Listing 4.4 as input . . 76

4.5 Single-level preg_replace() with explicit string arguments 76

4.6 Expected decoder output with the script in Listing 4.5 as input 76

LIST OF LISTINGS xii

4.7 Extract of a simple preg_replace() statement 77

4.8 Extract of an eval() construct encapsulating the preg_replace() statement

in Listing 4.7 . 77

4.9 Extract of the actual decoder output with the script in Listing 4.7 as input . . . 77

4.10 Extract of the outermost obfuscation layer . 78

4.11 Extract of the decoder output with the script in Listing 4.10 as input 78

4.12 Extract from the r57 shell showing examples of user-defined functions 81

4.13 Example output showing two function bodies extracted from the r57 test shell . 81

4.14 Example output showing hashed chunks extracted from the r57 test shell 83

1
Introduction

The overwhelming popularity of PHP as a hosting platform in recent years (Tatroe, 2005) has

made it the language of choice for developers of web-based Remote Access Trojans (RATs or

web shells) and other malicious software (Cholakov, 2008). These shells are typically used to

compromise and monetise web platforms by providing the attacker with basic remote access to

the system, including file transfer, command execution, network reconnaissance, and database

connectivity. Once infected, compromised systems can be used to defraud users by hosting phish-

ing sites, performing Distributed Denial of Service (DDOS) attacks, or serving as anonymous

platforms for sending spam or other malfeasance (Landesman, 2007).

The proliferation of such malware has become increasingly aggressive in recent years, with some

monitoring institutes registering over 390 000 new threats every day (AV Test, 2015). The vast

majority of these threats are largely derivative, incorporating core capabilities found in more

established RATs such as c99 and r57 (Kienzle and Elder, 2003; Slade, 2004). Authors of

malicious software routinely produce new shell variants by modifying the behaviours of these

ubiquitous RATs, either to add desired functionality or to avoid detection by signature-based

detection systems (Collberg et al., 1997; Sharif et al., 2008b; Wang, 2001). Once these modified

shells are eventually identified (or additional functionality is required), the process of shell

adaptation begins again. The end result of this iterative process is a web of separate but related

shell variants, many of which are at least partially derived from one of the more popular and

influential RATs.

1

1.1. PROBLEM STATEMENT 2

During the modification of the aforementioned shells, it has become common practice for mal-

ware authors to disguise their efforts by making extensive use of idiomatic obfuscation techniques

designed to frustrate any efforts to dissect, modify, or reverse engineer the code (Kienzle and

Elder, 2003; Wang, 2001). The resulting shells are functionally identical to their raw counter-

parts, but are more difficult to examine using static analytical techniques (Sharif et al., 2008b).

In order to determine the levels of similarity within a collection of shells and identify meaning-

ful inter-sample relationships accurately, it is necessary to deobfuscate and normalise all inputs

prior to analysis.

1.1 Problem Statement

The aim of this research was to create a system capable of accurately determining relationships

between RATs written in PHP despite their use of idiomatic obfuscation constructs designed to

thwart analysis attempts. The full problem statement is outlined below:

• PHP is widely used as a server-side scripting language, and as such is a popular choice for

malware developers

• Many of the shells created by these developers are derivatives of seminal shells such as

c99 and r57

• When these shells are modified, authors often employ obfuscation techniques to increase

their resilience to signature-based detection techniques

• The presence of these obfuscation constructs makes it difficult to identify relationships

between derivative malware samples

1.2 Research Goals

In response to the problem statement described above, five research goals were identified:

1. The creation of a decoder component capable of normalising and deobfuscating test sam-

ples prior to similarity analysis. The purpose of this component would be to reverse

commonly-used obfuscation idioms, thereby exposing more code for analysis.

2. The construction of four separate preprocessing modules designed to extract relevant fea-

tures for comparison.

3. The implementation of a modular system designed to compare the features extracted by

the preprocessing modules and create representative similarity matrices.

1.3. SCOPE 3

4. The creation of two visualisation modules capable of creating graphic representations of

the results obtained during similarity analysis for ease of interpretation. The purpose of

these modules is to facilitate the identification of meaningful relationships among samples

by analysts.

5. An evaluation of the effects of the deobfuscation process on the results produced during

similarity analysis.

1.3 Scope

It is important to note that the goal of this research was to identify derivative relationships

between RATs in a collection of known malware. Although the tracking of malware variants

could prove helpful as a method of detecting new web shells, the system was not designed as an

antivirus solution for a production environment. Furthermore, the system specifically targets

RATs written in PHP. As such, the approaches and techniques used during implementation

explicitly target features of the PHP language, and would require extensive modification to be

effective against malicious software developed using other languages. Finally, the deobfuscation

and similarity analysis performed during this research involved the inspection of malware source

files and not their binary forms, although many of the analytical approaches could be adapted

for this purpose.

1.4 Previous Publications

Sections of the research presented in this thesis have previously been published as follows:

• Towards a Sandbox for the Deobfuscation and Dissection of PHP Malware. In Information

Security for South Africa (Wrench and Irwin, 2014).

• A Sandbox-based Approach to the Deobfuscation and Dissection of PHP-based Malware.

In South African Institute of Electrical Engineers African Research Journal, Volume 106

(Wrench and Irwin, 2015a).

• Towards a PHP Webshell Taxonomy using Deobfuscation-assisted Similarity Analysis. In

Information Security for South Africa (Wrench and Irwin, 2015b).

• Detecting Derivative Malware Samples using Deobfuscation-assisted Similarity Analysis.

In South African Institute of Electrical Engineers African Research Journal, In Press

(Wrench and Irwin, 2016).

1.5. THESIS STRUCTURE 4

1.5 Thesis Structure

The remaining chapters of the thesis are organised as outlined below:

Chapter 2 introduces and discusses several important concepts related to code obfuscation and

similarity analysis.

Chapter 3 outlines the design and implementation of the system created to identify meaningful

inter-sample relationships.

Chapter 4 presents and critically evaluates the results obtained by the aforementioned system

during the testing process.

Chapter 5 concludes the study by summarising the research and making suggestions for further

research in the field.

2
Background and Previous Work

The detection of derivative malware samples is a non-trivial task with no well-defined solution.

Many different techniques and approaches can be found in the literature, each with their own

advantages and limitations. In an attempt to evaluate these approaches and contextualise the

research, this chapter begins in Section 2.1 by providing an overview of the PHP language itself,

including its notable features, performance relative to other languages, usefulness, inherent

security characteristics, and most particularly its role as the language of choice for developers

of RATs and other malware. Section 2.2 presents an overview of the structure and common

capabilities of these RATs, as well as a discussion of the various methods of uploading them

onto vulnerable hosts.

The concept of code obfuscation and the many methods of achieving it are discussed in Sections

2.3 and 2.4, before Section 2.5 goes on to discuss methods of reversing these techniques. Section

2.6 describes two idiomatic obfuscation constructs that are commonly employed by authors of

PHP-based malware in particular. The VirusTotal online analysis framework that was used to

source the majority of the test samples for this research is detailed in Section 2.7, while Sections

2.8 and 2.9 introduce the topics of lexical and similarity analysis, respectively. The Ssdeep

approximate hashing tool is described in Section 2.10, followed by Section 2.11, which explains

the three methods of data visualisation that were employed during this research. Sections 2.12

and 2.13 provide a discussion of previous work in the fields of code deobfuscation and similarity

analysis, respectively. Section 2.14 concludes by summarising the key concepts and findings of

the chapter.

5

2.1. PHP OVERVIEW 6

2.1 PHP Overview

PHP1 (the recursive acronym for PHP: Hypertext Preprocessor) is a general purpose scripting

language that is primarily used for the development and maintenance of dynamic web pages.

First conceived in 1994 by Rasmus Lerdof, the power and ease of use of PHP has enabled it to

become the world’s most popular server-side scripting language by numbers (Argerich, 2002).

Using PHP, it is possible to transform traditional static web pages with predefined content into

pages capable of displaying dynamic content based on a set of parameters. Although originally

developed as a purely interpreted language, multiple compilers have since been developed for

PHP, allowing it to function as a platform for standalone applications. Since 2001, the reference

releases of PHP have been issued and managed by The PHP Group (Doyle, 2011).

2.1.1 Language Features

Much of the popularity of PHP can be attributed to its relatively shallow learning curve. Users

familiar with the syntax of C++, C#, Java or Perl are able to gain an understanding of PHP

with ease, as many of the basic programming constructs have been adapted from these C-style

languages (Argerich, 2002; PHP Group, 2015a). As is the case with more recent derivatives of

C, users need not concern themselves with memory or pointer management, both of which are

dealt with by the PHP interpreter (McLaughlin, 2012). The documentation provided by the

PHP Group is concise and comprehensively describes the many built-in functions that are in-

cluded in the language’s core distribution (PHP Group, 2015c). The simple syntax, recognisable

programming constructs and thorough documentation combine to allow even novice program-

mers to become reasonably proficient in a short space of time (Argerich, 2002).

PHP is compatible with a vast number of platforms, including all variants of UNIX, Windows, So-

laris, OpenBSD and Mac OS X (Argerich, 2002). Although most commonly used in conjunction

with the Apache web server, PHP also supports a variety of other servers, such as the Common

Gateway Interface, Microsoft’s Internet Information Services, Netscape iPlanet and Java servlet

engines (PHP Group, 2015d). Its core libraries provide functionality for string manipulation,

database and network connectivity, and file system support (Argerich, 2002; Doyle, 2011; PHP

Group, 2015j), giving PHP unparalleled flexibility in terms of deployment and operation.

As an open-source language, PHP can be modified to suit the developer. In an effort to ensure

stability and uniformity, however, reference implementations of the language are periodically

released by The PHP Group (Doyle, 2011). This rapid development cycle ensures that bug

fixes and additional functionality are readily available and has contributed directly to PHP’s

reputation as one of the most widely supported open source languages in circulation today

1https://www.php.net/

2.1. PHP OVERVIEW 7

(Argerich, 2002; Sklar, 2008). An abundance of code samples and programming resources exist

on the Internet in addition to the vendor-provided standard documentation (The Resource Index

Online Network, 2005; PHP Group, 2015e; Zend Technologies, 2013), while many extensions have

been created and published by third party developers (PHP Group, 2015f).

2.1.2 Performance and Use

PHP is commonly deployed as part of the Linux, Apache, MySQL and PHP/Perl/Python

(LAMP) stack (Bughin et al., 2008). It is a server-side scripting language in that the PHP

code embedded in a page will be executed by the interpreter on the server before that page

is served to the client (Doyle, 2011). This means that it is not possible for a client to know

what PHP code has been executed – they are only able to see the result. The purpose of this

preprocessing is to allow for the creation of dynamic pages that can be customised and served

to clients on the fly (Argerich, 2002).

When implemented as an interpreted language, studies have found that PHP is noticeably slower

than compiled languages such as Java and C (Wu et al., 2000; Titchkosky et al., 2003). However,

since version 4, PHP code has been compiled into bytecode that is subsequently executed by the

Zend Engine, dramatically increasing efficiency and allowing PHP to outperform code written in

other languages (such as Axis2 and the Java Servlets Package) (Cecchet et al., 2003; Suzumura

et al., 2008; Trent et al., 2008). Performance can be further enhanced by deploying commonly-

used PHP scripts as executable files, eliminating the need to recompile them each time they are

run (Atkinson and Suraski, 2004).

At the time of writing, PHP was being used as the primary server-side scripting language by over

240 million websites (Ide, 2015), with its core module, mod php, logging the most downloads

of any Apache Hypertext Transfer Protocol (HTTP) module (PHP Group, 2015i). Of the

websites that disclosed their scripting language (several chose not to for security reasons), 79.8%

were running some implementation of PHP, including popular sites such as Facebook, Baidu,

Wikipedia and Wordpress (Web Technology Surveys, 2013).

2.1.3 Security

A study of the United States National Vulnerability Database performed in April 2013 found that

approximately 30% of all reported vulnerabilities were related to PHP (Coelho, 2013). Although

this figure might seem alarmingly high, it is important to note that most of these vulnerabilities

are not vulnerabilities associated with the language itself, but are rather the result of poor

programming practices employed by PHP developers. In 2008, for example, a mere 19 core PHP

vulnerabilities were discovered, along with just four in the language’s libraries (Coelho, 2013).

2.2. REMOTE ACCESS TROJANS 8

These numbers represent a small percentage of the 2218 total vulnerabilities reported in the

same year.

Apart from a lack of knowledge and caution on the part of PHP developers, the most plausi-

ble explanation for the large number of vulnerabilities involving PHP is that the language is

specifically being targeted by hackers. Because of its popularity, any exploit targeting PHP

can potentially be used to compromise a multitude of other systems running the same language

implementation (Coelho, 2013). PHP bugs are thus highly sought after because of the high

pay-off associated with their discovery. This mentality is clearly demonstrated in the recent

spate of exploits targeting open source PHP-based Content Management Systems like phpBB,

PostNuke, Mambo, Drupal and Joomla, the last of which has over 30 million registered users

(Miller, 2006; Open Source Matters, 2013).

2.2 Remote Access Trojans

Trojans horses are malicious scripts that claim to be desirable programs (Symantec Corporation,

2015). Distinguishable from true viruses by their lack of self-replicating mechanisms, these

scripts often create backdoors that allow a remote user to gain persistent administrative control

over a Personal Computer (PC) or server (Kazanciyan, 2012; Kienzle and Elder, 2003). Trojan

horses that incorporate this functionality are alternately termed Remote Access Trojans (usually

when installed on PCs) or web shells (usually when uploaded to production servers) (Kienzle

and Elder, 2003). The terms are used interchangeably for the purposes of this research.

2.2.1 Purpose and Use

Modern web shells can be used either as part of a larger compromise attempt or as a standalone

exploitation vector (Pfleeger and Pfleeger, 2002). They are most commonly used for the following

purposes (Chuvakin, 2003; United States Computer Emergency Readiness Team, 2015):

• To access and exfiltrate sensitive data such as user credentials or financial information

• To act as a relay point between an attacker and the hosts inside the network without direct

access to the Internet

• To create and maintain a persistent command-and-control structure such as a botnet

• To facilitate the uploading of additional forms of malware

2.2. REMOTE ACCESS TROJANS 9

2.2.2 Language and Structure

Web shells can be written in any language that is supported by the target web server. For

this reason, many of the popular RATs are written in well-supported languages such as PHP,

Active Server Pages (ASP), Python, Perl, and Ruby (Pfleeger and Pfleeger, 2002; United States

Computer Emergency Readiness Team, 2015). Shell sizes can vary from extremely small samples

containing just a single line of code to large, fully-featured samples consisting of thousands of

lines (Hutchins et al., 2011). Larger shells are generally self-sufficient, incorporating all the

functionality deemed necessary by the author, while smaller shells often rely on external scripts

or actions for effective exploitation.

Listing 2.1 contains an example of a rudimentary web shell written in PHP. Once uploaded onto

the target server, this script simply executes the contents of the ‘x’ parameter as PHP code

using the eval() function discussed in Section 2.6. An example of how this would be achieved

is shown in Listing 2.2.

1 <?php
2 eval($_GET["x"]);
3 ?>

Listing 2.1: Simple PHP web shell

http://target.com/example.php?x=echo("owned")%3B

Listing 2.2: URL targeting the shell in Listing 2.1

Unlike the rudimentary example in Listing 2.1 that requires users to submit their malicious

code via simple HTTP requests, many of the more advanced web shells include large sections

of embedded HyperText Markup Language (HTML) that are used to create comprehensive

and user-friendly Graphical User Interfaces (GUIs) (Haagman and Ghavalas, 2005). These

simple GUIs enable users with limited technical expertise to access advanced functionality, as

is demonstrated by the interface shown in Figure 2.1. The sample in question is a derivative

of the popular c99 shell, and includes interfaces that allow users to either execute predefined

commands or upload their own. In addition to this, this particular variant provides simple

interfaces for common I/O operations such as file creation and modification.

2.2.3 Common Capabilities

Although the capabilities of web shells vary according to their intended function, most shells

provide basic access to the local file system. Remote users can add, modify, and delete files

2.2. REMOTE ACCESS TROJANS 10

Figure 2.1: Interface of a derivative of the popular c99 shell

as though they had physical access to the server. In addition to this, many more of the more

developed samples provide additional functionality, some examples of which are provided below

(Landesman, 2007; Decloedt and van Heerden, 2010; Hutchins et al., 2011):

• Execution of arbitrary PHP scripts

• Keystroke logging

• The ability to include both local and remote files via FTP

• Automated detection of password files

• Registry editing

• Brute force password crackers

• Packet sniffing

• The ability to execute commands on both Linux and Windows systems

• Access to file search functionality

• The ability to send email from a compromised host

• Port binding functionality to allow for back connects and persistent access to specified

folders

2.3. CODE OBFUSCATION 11

2.2.4 Delivery Vectors

Any server that supports the uploading of client-supplied content (usually via the HTTP POST

method or compromised File Transfer Protocol (FTP)) is vulnerable to web shell infection

(Decloedt and van Heerden, 2010). In addition to this, RATs can be delivered via a number of

web application exploits and configuration weaknesses, including but not limited to the following

(Katz, 2009; United States Computer Emergency Readiness Team, 2015):

• Structured Query Language (SQL) injection

• Cross-site scripting (XSS)

• Local and Remote File Inclusion vulnerabilities (LFI/RFI)

• Application vulnerabilities in Content Management Systems (CMSs)such as Joomla, Word-

press, and Drupal

• Compromised administration interfaces that provide file upload capabilities

2.3 Code Obfuscation

Code obfuscation is a program transformation intended to thwart reverse engineering attempts.

The resulting program should be functionally identical to the original, but may produce addi-

tional side effects in an attempt to disguise its true nature.

In their seminal work detailing the taxonomy of obfuscation transforms, Collberg et al. (1997)

define code obfuscation as a “potent transformation that preserves the observable behaviour of

programs”. The concept of “observable behaviour” is defined as behaviour that can be observed

by the user, and deliberately excludes the distracting side effects mentioned above, provided

that they are not discernible during normal execution. A transformation can be classified as

potent if it produces code that is more complex than the original.

All methods of code obfuscation can be evaluated according to three metrics (Borello and Mé,

2008):

• Potency – the extent to which the obfuscated code is able to confuse a human reader

• Resilience – the level of resistance to automated deobfuscation techniques

• Cost – the amount of overhead that is added to the program as a result of the transfor-

mation

2.4. METHODS OF OBFUSCATION 12

Although primarily used by authors of legitimate software as a method of protecting technical

secrets, code obfuscation is also employed by malware authors to hide their malicious code.

Reverse engineering obfuscated malware can be tedious, as the obfuscation process complicates

the instruction sequences, disrupts the control flow and makes the algorithms difficult to under-

stand. Manual deobfuscation in particular is so time-consuming and error-prone that it is often

not worth the effort.

2.4 Methods of Obfuscation

Although the number of code obfuscation methods is limited only by the creativity of the

obfuscator, the ones listed in the sections below fall neatly into the three categories of layout, data

and control obfuscation (Linn and Debray, 2003; Li et al., 2009). Each category boasts methods

of varying potency, and a powerful obfuscator should employ methods from each category to

achieve a high level of obfuscation.

2.4.1 Layout Obfuscation

Perhaps the most trivial form of obfuscation, layout obfuscation is concerned with the modifi-

cation of the formatting and naming information in a program (Ertaul and Venkatesh, 2004).

Format Modification

The removal of formatting information such as line breaks and white space from source code is the

most common method of obfuscation. It can only be performed on programs written in languages

that do not depend on formatting as a structural device and is of low potency, as it removes

very little semantic content and is easily processed by automated deobfuscation systems. This

method is resilient to manual deobfuscation owing to the decrease in code readability, however,

and can be performed without adding any overhead to the original program (Collberg et al.,

1997).

Identifier Name Modification

The transformation or scrambling of meaningful variable names into arbitrary identifiers is

another common method of obfuscation (Ertaul and Venkatesh, 2004). Like format modification,

it does not affect the efficiency of the resulting program (it contributes no additional overhead)

and fails to confound automated deobfuscation systems (You and Yim, 2010). It is of a slightly

higher potency, however, as variable names in unmodified form contain a wealth of semantic

information that could be of use to a manual deobfuscator (Ertaul and Venkatesh, 2004).

2.4. METHODS OF OBFUSCATION 13

2.4.2 Data Obfuscation

The obscuring of data structures in a program by modifying how they are stored, accessed,

grouped and ordered is known as data obfuscation (Collberg et al., 1997). It is considered more

powerful than layout obfuscation as it obscures the semantics of a program and is able to stymie

some automated deobfuscation systems (Sharif et al., 2008b). Programs written using object-

oriented languages in particular store much of their semantic information in the form of data

structures. Data obfuscation is thus of paramount importance when attempting to obscure code

written in these languages.

Storage and Encoding Modification

Modifying the data storage characteristics of a program changes the way data structures are

stored in memory (Ertaul and Venkatesh, 2004). Typical examples of this type of obfuscation

include variable splitting (parts of a single variable stored in many different locations) and the

conversion of static data (such as a string) to procedural data (such as a function that produces

the same string at runtime). The former makes it difficult to discern the purpose of a variable

(it could be a variable fragment with no individual value) while the latter removes static data

that may contain information that could be used to aid in the reverse engineering process (Linn

and Debray, 2003).

Data Aggregation

Modifications to the way data are grouped in a program can also serve to obscure the data

structures contained therein (Li et al., 2009). Three common examples of this type of obfuscation

are listed below:

• Scalar variables such as integers can be merged into a single variable provided that the

single variable is sufficiently large to accommodate the scalar variables with no loss in

precision. It is possible, for example, to store two 32-bit integers in one 64-bit integer,

although this would then require major changes to how each variable is referenced in the

rest of the program.

• Structures such as arrays can be merged, split, folded or flattened to increase their com-

plexity. These techniques all complicate access to the arrays and further remove them

from the data they are intended to represent (flattening a two-dimensional array that was

intended to represent a chess board, for example, will make it more difficult to extract this

representation during the obfuscation process).

2.4. METHODS OF OBFUSCATION 14

• Class inheritance relationships can be complicated by splitting a single class into multiple

classes or by introducing fake classes into the inheritance hierarchy. The result of these

operations is a class structure in which classes no longer represent complete entities and

relationships are convoluted and illogical.

Data Ordering

When constructing a program, it is common practice to follow the principle of locality of ref-

erence and group data structures with the functions that are likely to modify them (Denning,

2005). This tendency can be used by deobfuscators to identify which data structures are related

to various functions, making it simpler for them to reverse engineer the code. Reordering data

structures removes this advantage and increases the complexity of the deobfuscation process.

Simple techniques include reordering variables (this often includes making some local variables

global to thwart locality analysis), reordering object methods and their parameters, and reorder-

ing elements within an array (You and Yim, 2010). When data reordering is combined with data

aggregation and storage, and encoding modification, it becomes very difficult for a deobfuscator

to correctly restore the program’s data structures (Collberg et al., 1997).

2.4.3 Control Obfuscation

Perhaps the most important characteristic of a program that needs to be obscured during the

obfuscation process is the control flow. Reverse engineering a program when the control flow

and data structures are known is a trivial process – as previously discussed, other obfuscation

methods such as layout modification are simple to overcome. As is the case with the obfuscation

of data, the aggregation and ordering of control flow statements are important and can be

modified to increase the program’s complexity and resilience (You and Yim, 2010).

Computation Modification

The modification of the computations involved in the determination of control flow (such as

condition calculations in loops and predicate evaluation in if statements) is a powerful method

of obfuscation, although it does introduce a significant amount of overhead into the resulting

program (Collberg et al., 1997). Computation modification can be achieved in the following

ways:

• Irrelevant code (i.e., code that has no impact on the control flow) can be inserted into a

program to frustrate deobfuscators and make the reverse engineering process more time-

consuming, as the deobfuscator has no way of knowing whether a section of code is irrele-

vant until it has been processed (Ertaul and Venkatesh, 2004).

2.4. METHODS OF OBFUSCATION 15

• Dummy processes can be added to the program to distract reverse engineering attempts

and code can be parallelised to complicate the control flow, making it more difficult to

unravel (Li et al., 2009). The latter technique is considered one of the more powerful

methods of obfuscation, as each parallel process increases the number of possible execu-

tion paths exponentially, greatly complicating and sometimes defeating the deobfuscation

process altogether.

Code Aggregation

Much like data aggregation, code aggregation merges dissimilar blocks of code and separates

similar blocks of code. Collberg et al. (1997) describe the twin goals of code aggregation as

follows:

• Code that a programmer has placed in a method (because it logically belonged together)

should be scattered throughout the program

• Code that has no logical relationship should be aggregated into a single method

Further obscuring of the abstractions usually employed by programmers can be achieved through

the use of inline and outline methods (Linn and Debray, 2003). Instead of abstracting commonly

used code into a separate method, an obfuscator will include this code (as an inline method)

wherever it is needed, effectively removing a semantically rich procedural abstraction that could

be leveraged by a deobfuscator. Outline methods, by contrast, abstract a section of code that

is not commonly used into a separate method, granting it undeserved status as a procedural

abstraction and potentially misleading any reverse engineering attempts (Collberg et al., 1997).

Code Ordering

When writing code, programmers tend to organise expressions and statements in a logical man-

ner that makes the program easy to read and understand. Since the goal of obfuscation is to

discourage understanding, it follows that the ordering of code should be as random as possible.

This is trivial for structures such as methods in classes, but in some cases the ordering of state-

ments cannot be entirely randomised because of the dependencies that exist between them (a

variable declaration cannot be placed below an expression that includes that variable, for exam-

ple). In these cases, a dependency analysis of the two statements must be performed before any

form of code reordering is attempted. Although reordering is not a powerful method of obfus-

cation when used in isolation, its effectiveness increases when combined with code aggregation

and computation modification. (Ertaul and Venkatesh, 2004)

2.5. DEOBFUSCATION TECHNIQUES 16

2.5 Deobfuscation Techniques

The obfuscation methods described in the previous sections are all designed to prevent code from

being reverse engineered. Given enough time and resources, however, a determined deobfuscator

will always be able to restore the code to its original state. This is because perfect obfuscation

is provably impossible, as is demonstrated by Barak et al. (2001) in their seminal paper “On

the (Im)possibility of Obfuscating Programs”. Collberg et al. (1997) concur, postulating that

every method of code obfuscation simply “embeds a bogus program within a real program” and

that an obfuscated program essentially consists of “a real program which performs a useful task

and a bogus program that computes useless information”. Bearing this in mind, it is useful to

review the techniques that are widely employed by existing deobfuscation systems.

2.5.1 Pattern Matching

Sophisticated deobfuscation systems are able to construct databases of previously detected bogus

code segments. They can then compare fragments of an obfuscated piece of code with the

patterns stored in the database and remove these fragments from the program before applying

the other techniques described below. The resultant decrease in the size of the program greatly

increases the efficiency of the deobfuscator – the larger the database is, the greater is the increase

in efficiency (You and Yim, 2010).

2.5.2 Program Slicing

Deobfuscators that employ program slicing techniques are able to split an obfuscated program

into manageable units called slices that can then be evaluated both individually and in relation

to other slices. In this way, the system can avoid bogus code entirely and group similar code

blocks together, reversing the efforts of the obfuscator and making the code more readable.

Advanced slicing systems are able to create chains of slices leading up to a target slice that

represent the code blocks that were executed up to that point, even if said blocks are scattered

throughout the program (Collberg et al., 1997).

2.5.3 Statistical Analysis

Like pattern matching, statistical analysis aims to remove unimportant code, but it is able to

do so without knowledge of previously discovered bogus segments (Li et al., 2009). Instead, the

deobfuscator will repeatedly test an expression in an obfuscated program and record the results

(Sharif et al., 2008a). If the expression always returns the same value, it is likely to belong to

the meaningless part of the obfuscated code and can safely be replaced with the value itself or

removed from the program altogether.

2.6. CODE OBFUSCATION AND PHP 17

2.5.4 Partial Evaluation

A partial evaluator is a system capable of splitting a source program into a static segment and

a dynamic segment. The static segment consists of all the code that can be identified and

computed by the evaluator prior to runtime. This code can be considered unimportant in the

sense that it produces no useful result and therefore corresponds to the spurious code blocks

often introduced by code obfuscators. Once the static segment has been removed, the remaining

dynamic segment represents the original program (You and Yim, 2010).

2.6 Code Obfuscation and PHP

As a procedural language with object-oriented features, PHP can be obfuscated using all of the

methods detailed in Section 2.4 (PHP Group, 2015k). In practice, however, two built-in code

execution functions account for the majority of code hiding efforts and are specifically marked by

the PHP Group as being potentially exploitable (Wrench and Irwin, 2014; PHP Group, 2015b,g).

As a result of its ability to execute an arbitrary string as PHP code, the eval() function is

widely used as a method of hiding code. The potential for exploitation is so great that the PHP

Group includes a warning against its use, advising that it only be used in controlled situations,

and that user-supplied data be strictly validated before being passed to the function. (PHP

Group, 2015b)

The eval() function is often combined with auxiliary string manipulation functions to form

the following obfuscation idiom (Wrench and Irwin, 2014):

eval(gzinflate(base64_decode(’GSJ+S...’)));

The string containing the malicious code is compressed before being encoded in base64. At

runtime, the process is reversed. The code that is produced is then executed through the use of

the eval() function.

The preg_replace() function is used to perform a regular expression search and replace in

PHP (PHP Group, 2015g). Although this does not present a problem in itself, the deprecated

’/e’ modifier allows the resultant text to be executed as PHP code (in effect causing an eval()

function to be applied to the result). An example of the use of the preg_replace() function

for hiding code is shown in the following code extract:

The example shows a very simple preg_replace() function that searches for the pattern ‘x’

in the string ‘y’, replaces it with the string ‘echo($a);’ and then evaluates the resulting

2.7. VIRUSTOTAL 18

preg_replace(’/x/e’, ’echo($a);’, ’y’);

code. In this case, the text contained in the $a variable would be displayed if the code was

executed.

2.7 VirusTotal

Originally developed by Hispasec in 2004, VirusTotal2 is a Google-owned online analysis service

that can be used to scan files for malicious content (VirusTotal Team, 2015a). The company’s

stated vision is to “improve the antivirus and security industry and make the Internet a safer

place through the development of free tools and services” (VirusTotal Team, 2015a). In pursuit of

this goal, the service aggregates results produced by a total of 55 commercial antivirus products

when run against a given file (Sanz et al., 2013). A full list of these antivirus engines is provided

in Appendix A.

Files suspected of containing malicious code can be uploaded to VirusTotal in three ways: via

the web interface, by email, or through scripted submissions to the service’s online Application

Program Interfaces (APIs), which are discussed in greater detail in Sections 2.7.1 and 2.7.2

(VirusTotal Team, 2015a). Once the analysis has been successfully completed, the service returns

a JSON object containing the results produced by each scanning engine, including detection

labels that attempt to identify the type of malware under investigation. Of particular interest to

this research is the “Backdoor:PHP” designation assigned to appropriate samples by Microsoft’s

Malware Protection engine, which was used to isolate and retrieve RATs written in PHP for use

as inputs during system testing.

2.7.1 Public API

VirusTotal’s public API is a free service that allows client applications to upload and scan

files, Uniform Resource Locators (URLs), and Internet Protocol (IP) addresses (VirusTotal

Team, 2015c). Users with a public key also have access to reports relating to all previous

scans performed by the service, and can create automated sample comments within VirusTotal’s

research community.

The primary method of interacting with VirusTotal’s APIs is through the use of HTTP re-

quests and corresponding JavaScript Object Notation (JSON) object responses (VirusTotal

2https://www.virustotal.com/

2.8. PARSING AND LEXICAL ANALYSIS 19

Team, 2015c). Users of the public API are limited to the four call types listed in Table 2.1,

and may only submit four requests per minute. All requests must be accompanied by the user’s

public API key, as well as additional parameters specific to each type of request. Requests that

target a single malware sample must identify it by including either its MD5 or SHA1 hash.

Table 2.1: Summary of VirusTotal’s public API calls

API Call Parameters Description

/vtapi/v2/file/scan API key, file contents Upload and scan a given file

/vtapi/v2/file/rescan API key, hash Rescan a previously submitted file

/vtapi/v2/file/report API key, hash Get the scan results for a specified file

/vtapi/v2/comments/put API key, hash, comment Upload a comment for a specified file

2.7.2 Private API

VirusTotal’s private API is a billed service that allows commercial clients to circumvent the

request rate limitation described in the previous section (VirusTotal Team, 2015b). Users are

charged a monthly fee based on the maximum number of requests that they expect to make each

month, and can make these requests as often as required. The service’s use of Google’s scalable

App Engine3 infrastructure guarantees request throughput and ensures availability.

In addition to providing an unlimited request rate, the private API exposes a more comprehensive

and powerful set of features. Users with a private key can make use of the extended collection

of API calls listed in Table 2.2 (VirusTotal Team, 2015b). Of particular interest to this research

are the search and download calls, which, when used in conjunction, allow a user to retrieve

samples that meet a specified criteria. This functionality was leveraged to source RATs written

in PHP during the implementation of the download scripts, which are described in Section 3.2.

2.8 Parsing and Lexical Analysis

Parsing is defined as the process of analysing a string of symbols to determine whether it

conforms to the rules laid out by a formal grammar (Aho et al., 1986). In the field of Computer

Science, the first step in the parsing process is referred to as lexical analysis, which is the process

of converting a string of symbols into a sequence of meaningful tokens (Terry, 2005). In PHP,

lexical analysis is carried out by the Zend Engine, an open source interpreter originally developed

by Andi Gutmans and Zeev Suraski (Ullman, 2004).

3https://cloud.google.com/appengine/

2.8. PARSING AND LEXICAL ANALYSIS 20

Table 2.2: Summary of VirusTotal’s private API calls

API Call Parameters Description

/vtapi/v2/file/scan API key, file Upload and scan a given file

/vtapi/v2/file/rescan API key, hash Rescan a previously submitted file

/vtapi/v2/file/report API key, hash Get the scan results for a specified file

/vtapi/v2/file/behaviour API key, hash Get a report about a file’s behaviour in a
sandbox environment

/vtapi/v2/file/network API key, hash Get a dump of the network traffic gener-
ated by a file when executed.

/vtapi/v2/file/search API key, query, offset Search for samples that match certain cri-
teria

/vtapi/v2/file/download API key, hash Download the specified file

/vtapi/v2/comments/put API key, hash, comment Upload a comment for a specific file

/vtapi/v2/comments/get API key, hash Get the comments for a specific file

2.8.1 Tokenizer Extension

PHP’s Tokenizer extension (PHP Group, 2015h) provides an interface to the lexical analyser

used by the Zend Engine4. Using this interface, it is possible to carry out token-based source

code analysis and modification without the need for a custom parser. Of particular interest to

this research are the token_get_all() function and the T_FUNCTION token type, which can

be used in combination to locate and extract function names and bodies. Sections 3.5.2 and

3.5.1 contain more detail as to how this can be achieved.

The token_get_all() function can be used to convert a given source string into a stream

of PHP language tokens using the Zend engine’s lexical scanner (PHP Group, 2015h). These

tokens can then be queried using the token_name() function to determine their type.

2.8.2 PHP-Parser

PHP-Parser5 is an open-source parser capable of programmatically manipulating PHP code.

Based on the token_get_all() function discussed in Section 2.8.1, it is capable of construct-

ing representative abstract syntax trees (ASTs) that encapsulate the structure of the code used

as input (Baxter et al., 1998). Each node in an AST represents a syntactic construct within the

code. Once constructed, these ASTs can then be transformed back into PHP code according to

a predefined set of formatting rules, a process known as pretty printing (Roy and Cordy, 2008).

4http://www.zend.com/
5https://github.com/nikic/PHP-Parser

2.9. SIMILARITY ANALYSIS 21

2.9 Similarity Analysis

All code dissection techniques can be classified as being either static or dynamic in nature (Bink-

ley, 2007). Static analysis approaches attempt to examine code without running it (Christodor-

escu et al., 2007). Because of this, these approaches have the benefit of being immune to any

potentially malicious side effects. The lack of runtime information such as variable values and

execution traces does limit the scope of static approaches, but these are still useful for exposing

the structure of code and comparing it with previously analysed samples (Zaremski and Wing,

1993a). By contrast, dynamic approaches extract information about a program’s functioning by

monitoring it during execution (Christodorescu et al., 2007). These approaches examine how a

program behaves and are best confined to a virtual environment such as a sandbox so as to min-

imise the exposure of the host system to infection (Christodorescu et al., 2007). The remainder

of this section introduces several common static and dynamic similarity analysis techniques.

2.9.1 Signature Matching

A software signature is a characteristic byte sequence that can be used to uniquely identify a

piece of code (Zaremski and Wing, 1993a). Anti-malware solutions make use of static signatures

to detect malicious programs by comparing the signature of an unknown program to a large

database containing the signatures of all known malware – if the signatures match, the unknown

program is flagged as suspicious. This kind of detection can easily be overcome by making trivial

changes to the source code of a piece of malware, thereby modifying its signature (Zaremski and

Wing, 1993b).

2.9.2 Pattern Matching

Pattern matching is a generalised form of signature matching in which patterns and heuristics are

used in place of signatures to analyse pieces of code (Zaremski and Wing, 1993a). This allows

pattern matching systems to recognise and flag code that contains patterns that have been

found in previously analysed malware samples, which, although an improvement on signature

matching, is still insufficient to identify newly developed malware (Zaremski and Wing, 1993a).

Patterns that are too general will lead to false positives (benign code that is incorrectly classified

as malicious), whereas patterns that are too specific will suffer from the same restrictions faced

by signature matching (Zaremski and Wing, 1993a).

2.9.3 API Hooking

API hooking is a technique used to intercept function calls between an application and an

operating system’s different APIs (Sun et al., 2006). In the context of code dissection, API

2.10. THE SSDEEP FUZZY HASHING ALGORITHM 22

hooking is usually carried out to monitor the behaviour of a potentially malicious program

(Berdajs and Bosnic, 2010). This is achieved by altering the code at the start of the function

that the program has requested access to before it actually accesses it and redirecting the request

to the user’s own injected code (Berdajs and Bosnic, 2010). The request can then be examined

to determine the exact behaviour exhibited by the program before it is directed back to the

original function code (Sun et al., 2006).

The precision and volume of code required for correct API hooking mean that behaviour mon-

itoring systems that make use of the technique are complex and time consuming to implement

(Berdajs and Bosnic, 2010). They are also virtually undetectable and thoroughly customisable

(only functions relevant to behaviour analysis need be hooked).

2.9.4 Cryptographic versus Approximate Hashing

Hashing is a technique commonly used in forensic analysis that transforms an input string of ar-

bitrary length into a fixed-length signature (Kornblum, 2013). Once generated, these signatures

can be used to match identical files efficiently. Traditional cryptographic hashing algorithms

such as MD5 and SHA256 are designed such that changing just one bit in the input file leads

to the generation of a completely different hash signature. This approach, although ideal for

matching identical files, makes these algorithms incapable of matching files that are merely sim-

ilar. For this purpose, it is necessary to use Context-Triggered Piecewise Hashing (CTPH), an

implementation of which is described in the following section.

2.10 The Ssdeep Fuzzy Hashing Algorithm

Ssdeep6 is a hashing tool that was developed by Kornblum (2006). It is capable of using CTPH

to generate fuzzy hashes that can then be compared to determine the similarity of a set of

files. The similarity value that the tool generates represents the edit distance between two fuzzy

hashes (i.e., the number of changes that need to be made to convert the one hash into the other).

As a result of its combination of both rolling and piecewise hashes, the tool’s hashing algorithm

is more computationally demanding than other algorithms such as MD5, but it is a far more

effective way of identifying code reuse in similar files.

2.10.1 Piecewise Hashes

Piecewise hashing is the process of using an arbitrary hash function to generate multiple hashes

for a given file instead of only one (Baier and Breitinger, 2011). This is achieved by dividing the

6http://ssdeep.sourceforge.net/

2.10. THE SSDEEP FUZZY HASHING ALGORITHM 23

file into fixed-size segments and then hashing these segments individually. Originally developed

by Nicholas Harbour in 2002, the technique was originally intended to mitigate errors during

forensic imaging by confining the effect of a segment error to only one of the piecewise hashes,

thereby preserving the integrity of the remaining hashes. Kornblum (2006) recognised the po-

tential of piecewise hashing for constructing fuzzy hashes, and combined it with a rolling hash

function to produce the Ssdeep hashing algorithm.

2.10.2 Rolling Hashes

A rolling hash function produces a pseudo-random value based on a contextual window that

moves through the input file (Roussev, 2011). During file processing, the value of the hash

is thus dependent on the last n bytes of the file. As such, a rolling hash can be thought of

as representing the “context” of the file at any given time. Algorithms for rolling hashes are

constructed such that it is possible to calculate the next hash using only the previous hash, the

byte to be removed, and the byte to be added (Chen and Wang, 2008).

2.10.3 Context-Triggered Piecewise Hashing

Traditional piecewise algorithms use fixed offsets to separate a file into blocks which can sub-

sequently be hashed (Baier and Breitinger, 2011). When attempting to compare similar files,

however, this approach proves ineffective, as simply adding one byte to the beginning of the

input file will shift each of the blocks and alter all of the resulting piecewise hashes. For this

reason, the Ssdeep algorithm uses a rolling hash to delineate piecewise hashing blocks (Korn-

blum, 2006). Each time the rolling hash produces a trigger value, a piecewise hash is recorded

and the process beings again. The end result of this process is a CTPH signature in which each

value depends on only part of the input. Because of this property, these signatures can be used

to detect commonalities between files that are not identical.

2.10.4 Comparing Hashes and the Blocksize Limitation

Hash signatures produced by the Ssdeep algorithm are compared using the Levenshtein or edit

distance, which is defined as the minimum number of single-character edits required to change

one string of characters into another (Yujian and Bo, 2007). Because the trigger values for the

piecewise hash are based on the block size (which is in turn based on the size of the input file),

only files with the same block size can be compared in this way (Kornblum, 2006). For this

reason, each CTPH signature produced by the Ssdeep algorithm includes hashes based on two

block sizes b and 2b so as to facilitate the comparison of signatures containing block sizes within

a power of two.

2.11. DATA VISUALISATION 24

Table 2.3: Pydeep wrapper functions

Function Description

pydeep.hash_buf() Returns the Ssdeep hash for a given buffer

pydeep.hash_file() Returns the Ssdeep hash for a given file

pydeep.compare() Calculates a similarity value for two hashes

Another documented issue7 with the current version of the software, Ssdeep 2.5, is the minimum

block size that is assigned by the algorithm. During testing carried out for this research, it was

discovered that files containing fewer than 200 characters do not register the correct level of

similarity. The effect worsens as the file sizes decrease, culminating in a similarity value of zero

for identical files containing 18 or fewer characters.

2.10.5 Pydeep

Pydeep8 is a Python module that includes wrapper functions for the Ssdeep library, which was

originally written in C. It allows the user to compute Ssdeep hashes for both files and buffers,

and is able to compare two such hashes to determine an overall similarity score. A list of the

functions provided by Pydeep is given in Table 2.3.

2.11 Data Visualisation

Data visualisation is the process of representing mundane data (such as numerical values) as

visual objects with the aim of increasing accessibility and understanding (Friendly and Denis,

2001). Successful visualisation techniques should assist the viewer with analytical tasks such

as making comparisons and identifying patterns in data (Schroeder et al., 2004; Fayyad et al.,

2002).

A key concern when considering different visualisation methods is to choose a representation that

is well-suited to both the dataset and the desired form of analysis. Each of the many available

forms of visualisation lend themselves to a particular type of analysis (Buja et al., 1996). Line

graphs, for example, are most suited to displaying data that changes over time, and are useful for

discovering overall trends, while bar graphs are generally used to compare different quantities.

Bearing this in mind, Sections 2.11.1 through to 2.11.3 introduce three visualisation techniques

that are adept at representing similarity between objects. When used in conjunction with one

another, these techniques are able to provide a comprehensive overview of sample similarity,

and can be used to easily identify meaningful inter-sample relationships within large datasets.

Section 2.11.4 details the Python libraries that were used to create these visualisations.

7https://github.com/treffynnon/lib mysqludf ssdeep/issues/3
8https://github.com/kbandla/pydeep

2.11. DATA VISUALISATION 25

2.11.1 Similarity Matrices

A similarity matrix is a set of similarity scores between pairs of objects from a given object

collection (Hartigan, 1967). Each element in the matrix represents the level of similarity between

two of the objects, and is calculated using a specified measure of similarity. Similarity matrices

are primarily used to identify clusters of similarity in a given set of data, and as such find

application in a wide variety of fields, including bioinformatics, where they are used to detect

similar Deoxyribonucleic Acid (DNA) sequences, and phylogenetic analysis, where they form

the basis for hierarchical clustering techniques (Campanella et al., 2003; Iam-on et al., 2008).

Figure 2.2 displays an example of a rudimentary similarity matrix that contains the pairwise

similarity values for four objects A, B, C, and D ranging from 0 to 100. From the diagram it

is trivial to determine that the highest level of similarity is observed between samples A and B

with a score of 92, while samples B and D display the lowest level of similarity with a score of

only 26. The example matrix also demonstrates two properties that are inherent to all pairwise

similarity matrices: it is diagonally symmetrical from left to right, and the values along this

diagonal all indicate perfect similarity as a result of comparing samples against themselves.

Figure 2.2: Example of a simple similarity matrix

2.11.2 Heatmaps

A heatmap is a two-dimensional graphical representation of a matrix of values in which each

value is represented by a colour or shade (Brodlie et al., 2012). The magnitude of each value

can either be denoted by the colour itself (in which case a legend of colours and their associated

value ranges needs to be consulted) or by the relative lightness and darkness of the shade, with

darker colours traditionally representing larger values. Because of this property, the structures

2.11. DATA VISUALISATION 26

can be used to easily identify values (or areas of values) that represent a high level of pairwise

similarity (Wilkinson and Friendly, 2009).

As is the case with the similarity matrices defined in Section 2.11.1, heatmaps are primarily used

in fields that require the comparison of large amounts of data. According to Rajaram and Oono

(2010), the clustered heatmap is the most popular technique for visualising genomic data as a

result of its ability to display large datasets intuitively and facilitate the detection of structural

relationships within the data.

Figure 2.3 displays a simple heatmap created from the similarity matrix shown in Figure 2.2.

Although the detail of the original construct is somewhat reduced by substituting the values for

shades of blue, the resulting representation is more intuitive and easier to interpret. The increase

in accessibility is even more pronounced for larger datasets – complex matrices containing many

values are difficult to interpret, but their associated heatmaps can readily be used to identify

patterns and relationships. Further proof of this was encountered during the testing performed

in Section 4.7, which demonstrated that the more visual representations (i.e., heatmaps and

dendrograms) remained useful even when performing similarity analysis among hundreds of

RAT samples.

Figure 2.3: Simple heatmap based on the similarity matrix in Figure 2.2

The heatmap in Figure 2.3 can be used to reach the same conclusions that resulted from an

examination of the similarity matrix in Figure 2.2. The darkest blocks along the diagonal from

left to right demonstrate the perfect similarity between samples when compared to themselves,

and the second darkest blocks present at the intersections of samples A and B show that they

share the highest level of similarity between unique samples. Samples B and D are the most

dissimilar, as is evidenced by the lack of colour at their points of intersection.

2.11. DATA VISUALISATION 27

2.11.3 Dendrograms

Dendrograms are tree-like structures that can be used to display the relationships that result

from hierarchical clustering algorithms in an intuitive way (Everitt and Skrondal, 2002). The

hierarchical nature of the dendrograms produced in this way allows for the identification of

derivative sample relationships, as well as the magnitude of such relationships (Sokal and Rohlf,

1962).

Figure 2.4a shows a simple dendrogram that is based on the similarity matrix shown in Figure

2.2. An annotated version of the same diagram is shown in Figure 2.4b for explanatory purposes.

The horizontal axes of the dendrograms represent the objects and clusters, while the vertical

axes represent the distance or dissimilarity between them.

Dendrograms can be used to identify clusters of samples based on their similarity. The two

clusters in Figure 2.4b are marked by areas X and Y. Cluster X contains samples A and B, while

cluster Y contains samples C and D. Samples in cluster X have more in common with each other

than they do with samples in cluster Y. Sample A is thus more similar to sample B than it is to

either C or D, and vice versa.

The heights of the branches connecting each cluster represent the distances between them (Choi

et al., 2010). The closer the branch is to the x-axis, the lower the distance, and the more similar

the samples. A comparison of the heights of clusters X and Y in Figure 2.4b (denoted by lengths

E and F, respectively) reveals that A is more similar to B than C is to D.

2.11.4 Data Visualisation Tools

The Python programming language contains a number of extensions that directly support the

creation of the data visualisations discussed in Sections 2.11.1 to 2.11.3, including the NumPy9,

SciPy10, and Matplotlib11 packages, each of which is briefly described below.

• NumPy is Python’s fundamental N-dimensional array package. Originally derived from

the Numeric extension created by Jim Hugunin in 1995, the package provides support

for multi-dimensional arrays and includes a comprehensive set of functions for creating,

manipulating, and storing these structures (Oliphant, 2006; Van Der Walt et al., 2011).

NumPy forms the base of the SciPy stack, which includes libraries such as Matplotlib,

Pandas12, and SymPy13 (McKinney, 2012).

9http://www.numpy.org/
10http://www.scipy.org/
11http://matplotlib.org/
12http://pandas.pydata.org/
13http://www.sympy.org/en/index.html

28

(a) Original dendrogram based on the similarity matrix in Figure 2.2

(b) Annotated dendrogram based on the similarity matrix in Figure 2.2

Figure 2.4: Original and annotated dendrograms based on the similarity matrix in Figure 2.2

2.12. RELATED WORK – DEOBFUSCATION AND NORMALISATION 29

• The SciPy library is a collection of a open-source software that is useful in the fields

of mathematics, science, and engineering (Bressert, 2012). Created by Travis Oliphant

(an active developer of NumPy), the library contains modules that enable tasks that are

commonly encountered in these fields, including optimisation algorithms, interpolation,

image processing, and hierarchical clustering, amongst others. Scipy’s core data structure

is the N-dimensional NumPy array, which it uses to store arbitrary data types.

• Matplotlib is a cross-platform two-dimensional graphics environment that forms part

of the SciPy library and is used to create interactive figures in Python (Hunter, 2007).

The environment enables the creation of a variety of visual objects such as bar charts,

histograms, heatmaps, scatterplots, and dendrograms, and can be extended to create other

plots through the use of external toolkits (Hunter and Dale, 2007).

2.12 Related Work – Deobfuscation and Normalisation

Although the existence and widespread use of code obfuscation is well-documented (Collberg

et al., 1997; Christodorescu et al., 2005; Wrench and Irwin, 2015a), relatively few fully-functional

deobfuscation tools have been developed to address this problem. Research in this area tends

to be largely theoretical, particularly when it comes to the analysis of malware source code.

The deobfuscation systems that were found tended to target malware binaries as opposed to

their source code. Furthermore, the author was unable to find any deobfuscation systems that

explicitly target the PHP language. For this reason, the remainder of this section outlines some

of the generic deobfuscation and normalisation tools that are described in the literature.

2.12.1 LOCO: An Interactive Code (De)obfuscation Tool

LOCO is a interactive graphical environment in which a user can experiment and observe the

effects of both obfuscation and deobfuscation transformations (Madou et al., 2006). Based on

a visualisation tool called Lancet and an obfuscation infrastructure called Diablo, the environ-

ment is able to expose the control flow of a program and show the effects of any obfuscating

or deobfuscating actions on it. Users can choose either to execute and evaluate existing obfus-

cation/deobfuscation transformations or to develop and test transformations of their own. The

environment’s visualisation feature is particularly helpful when it comes to identifying flaws in

deobfuscation transformations, as the user can step through the program and identify the effects

of the transformation at any point in the code. It also facilitates the manual deobfuscation of

programs by allowing users to modify the source code and observe how each modification affects

the flow of control.

Although LOCO includes powerful transformation testing and visualisation features, it is more

a tool for developing and testing deobfuscation systems than a system in itself. It lacks the

2.12. RELATED WORK – DEOBFUSCATION AND NORMALISATION 30

ability to store and reuse code transformations, and its built-in deobfuscation algorithms are

designed to be extensible rather than comprehensive. LOCO also functions at the assembly

level, which gives it more flexibility but means that its algorithms cannot be adapted for use in

deobfuscation systems that function at a higher level.

2.12.2 Deobfuscator: An Automated Control Flow Simplifier

Developed by Raber and Laspe in 2007, Deobfuscator is an IDA Pro14 plug-in that can be

used to simplify malware binaries (Raber and Laspe, 2007). It relies on the extensive debugging

capabilities of the IDA Pro disassembler to iteratively simplify instruction sequences by removing

unnecessary no-ops and jumps. Once these redundant obfuscation constructs have been removed,

the plug-in collapses the remaining instructions to create an optimised (or deobfuscated) set of

instructions.

The major advantage of Deobfuscator is that it can be used to deobfuscate binaries written in

any language at the assembly level. This is especially useful when the malware’s source code is

not available, which is often the case. In a system that combines both obfuscation and similarity

analysis, however, it is preferable to investigate malware samples at a higher level if possible, as

the richer semantic content of the source code provides a more nuanced and detailed basis for

comparison.

2.12.3 A Malware Transformer to Improve Detection Rates

In an effort to improve the detection rates of commercial malware detectors, Christodorescu

et al. (2007) designed and implemented a malware transformer that can be used to reverse

common obfuscation techniques at the assembly level. As was the case with the Deobfuscator

tool described in the previous section, the transformer relies on disassembly processes carried

out by IDA Pro. In addition to the removal of single-instruction no-ops and jumps, however,

the transformer is also able to perform three more complex deobfuscation tasks, including code

reordering, code extraction, and the removal of semantic no-ops.

Although more capable than Deobfuscator, the malware transformer developed by Christodor-

escu et al. (2007) also operates at the assembly level and is thus of limited value as a precursor to

source code similarity analysis. The focus of the tool is to improve malware detection rates for

various antivirus solutions, and not to expose additional code for the purposes of comparison,

which is one of the primary goals of this research.

14https://www.hex-rays.com/products/ida/

2.13. RELATED WORK – MALWARE SIMILARITY ANALYSIS 31

2.12.4 Summary

All of the deobfuscation systems reviewed in this section were designed to improve the results

achieved by commercial antivirus engines (with the notable exception of LOCO, which is used to

test the deobfuscation systems themselves). Because most malware is distributed in binary form,

these systems rely on deobfuscation at the assembly level. Operating at this level is undeniably

advantageous in a production environment, but the generic nature of these tools means that

they are unable to reverse language-specific obfuscation constructs such as those described in

Section 2.6.

2.13 Related Work – Malware Similarity Analysis

The overwhelming increase in the number of malicious software variants in recent years has

spurred research into automated detection methods, most of which incorporate some form of

heuristic or similarity analysis techniques (Baxter et al., 1998; Bailey et al., 2007; Sharif et al.,

2008a; Lu and Debray, 2012; Wrench and Irwin, 2015a). As was the case when examining related

work on code deobfuscation in Section 2.12, none of these approaches target PHP specifically,

but a multitude of generic malware analysis tools have been developed and tested (Walenstein

et al., 2007; Shankarapani et al., 2011; Nair et al., 2010; Jang et al., 2011). An overview of

four of the tools that were found to be most relevant to this research are briefly outlined in the

remainder of this section.

2.13.1 BitShred: Scalable Malware Analysis using Feature Hashing

Developed by Jang et al. (2011) in response to the growing number of malware variants faced

by modern security vendors, BitShred is a scalable analysis framework that uses feature hashing

to expedite the evaluation of large numbers of malware samples. The system is able to compare

binaries by performing either n-gram (i.e., string sequence) or behavioural analysis and then

reducing the resulting feature space by hashing each of the uncovered features. These hashed

features can then be compared to those of other samples more efficiently than the high dimen-

sional feature spaces that are traditionally used in malware analysis. The system incorporates

work undertaken by Abou-Assaleh et al. (2004) and Bayer et al. (2009) in the fields of n-gram

and behavioural analysis, respectively.

The main goal of the BitShred analysis framework is to increase the scalability of existing

malware analysis techniques by using feature hashing to improve the efficiency of all inter-

sample comparisons. As such, it is more an enabler of similarity analysis for large datasets than a

complete similarity analysis tool. Despite this, tests of the system using n-gram and behavioural

2.13. RELATED WORK – MALWARE SIMILARITY ANALYSIS 32

analysis showed that the tool more than doubled the efficiency of these two approaches while

maintaining the same levels of accuracy as the original research.

2.13.2 Vilo: Code Reuse Detection using N-gram and N-perm Analysis

Walenstein et al. (2007) used code reuse detection techniques on disassembled code in an attempt

to detect new malware variants. The result of their efforts was Vilo, a method for detecting

code reuse based on the comparison of both n-grams (ordered string sequences) and more general

n-perms, where the order of the strings is not considered when performing matching operations.

By combining this approach with feature weighting algorithms that assign more weight to n-

grams and n-perms that appear less frequently in the target file, the authors of Vilo were able

to achieve a detection rate of 79%, albeit for a fairly limited dataset. As was the case with many

of the deobfuscation tools discussed in Section 2.12, this analysis was conducted at the assembly

level using the IDA Pro disassembly tool.

2.13.3 SAVE and MEDiC: Malware Detection using API and Assembly Calls

Shankarapani et al. (2011) developed two malware detection tools that rely on similarity analysis

as opposed to traditional signature-based matching techniques. SAVE, the Static Analyser for

Vicious Executables, analyses the sequence of API calls made by a potentially malicious sample

and compares it to a database containing the API call sequences of known malware. The Malware

Examiner using Disassembled Code (MEDiC) performs a similar comparative analysis using

sequences of assembly calls, with the goal of determining the likelihood that the given sample

contains malicious code. Although false positives were observed when using both techniques

individually, the authors assert that the combination of the two approaches minimizes such

errors.

Both the SAVE and MEDiC tools use a single measure of similarity to determine whether a

sample contains code sequences corresponding to those discovered in known malware samples

(Shankarapani et al., 2011). Files that are processed by the tools are simply classified as being

malicious or benign according to a threshold value – no further investigation of inter-sample

relationships is carried out. In addition to this, the majority of the testing conducted by the

authors was aimed at pitting their tools against existing detection solutions to determine their

relative effectiveness rather than at more in-depth similarity analysis.

2.13.4 Medusa: Dynamic Malware Analysis using API Signatures

Medusa is a malware analysis system developed by Nair et al. (2010). Like the SAVE tool

described in the previous section, the Medusa system traces the API calls made by input samples

2.14. CHAPTER SUMMARY 33

to detect malicious behaviour. Instead of comparing these call sequences to those of known

malware samples, however, Medusa creates an API call signature based on the combined call

sequences of an entire malware class. The system’s detection engine then uses these composite

class signatures to identify and classify new malware samples.

As with all the other similarity analysis tools discussed in this section, the focus of the Medusa

system is the detection of new malware instances based on their similarity to a body of previously

classified malicious samples. The goal of such systems is classification rather than interpretation,

which means that interrogation of any detected similarity is limited to a predefined threshold

value.

2.13.5 Summary

The approaches to similarity analysis presented in this section are all responses to the rapid

increase in the proliferation of malware samples in recent years (Kaspersky, 2011; Edem et al.,

2014). All focus on providing an efficient means of detecting malicious software based on sample

characteristics and behaviour. This emphasis on efficiency and automation means that the

similarity process is restricted, with most approaches implementing a single measure of similarity

that is designed to scale well with larger datasets. Furthermore, the interpretation of the results

was often limited to the classification of each input sample as either malicious or benign, with

no room for a gradual scale of similarity. All of these traits, combined with the generic nature of

all of the tools that were discussed, make these approaches ideal for use as production antivirus

solutions, but they lack the capacity for the more nuanced and detailed analysis that is preferable

when attempting to identify groups of derivative malware samples.

2.14 Chapter Summary

This chapter began with a discussion of the noteworthy features of PHP, including its per-

formance and security characteristics as well as its widespread use as a server-side scripting

language (and consequent popularity among the developers of RATs). The basic structure and

capabilities of a typical web shell were also discussed, with particular emphasis on the delivery

vectors that are commonly used to upload these shells onto vulnerable hosts. Various methods

of obfuscating code were then presented, as were techniques for reverse engineering scripts ob-

fuscated using these methods. The concept of similarity analysis was introduced, along with a

discussion of the different approaches used to perform it effectively. Techniques for using CTPH

as a method of similarity analysis were then described before moving on to describe three useful

ways of visualising levels of similarity between a large number of files. The chapter concluded

with a discussion of related work undertaken by researchers in the fields of code deobfuscation

and similarity analysis.

3
Design and Implementation

The detection of derivative PHP-based malware samples required the creation of a system ca-

pable of deobfuscating and normalising sample inputs, extracting relevant features for analysis,

performing comparisons between sample features, and finally visualising the results. This chap-

ter begins in Section 3.1 by providing a high-level overview of the constructed system, including

an explanation of how malware samples pass through it. Section 3.2 details the implementation

of the download scripts responsible for retrieving and storing such samples, before Section 3.3

goes on to describe the structure of the decoder component that is used to deobfuscate and

normalise these samples prior to similarity analysis.

The Viper malware analysis framework that was used as a basis for the construction of the sim-

ilarity analysis system is introduced in Section 3.4. Sections 3.5 and 3.6 describe the individual

and batch modules that are used to extract pertinent features from each of the malware sam-

ples, while Section 3.7 introduces the matrix module that compares these features and produces

representative similarity matrices. Section 3.8 concludes the chapter with a description of the

visualisation modules, which are used to create graphical representations of the results produced

by the matrix module to facilitate the identification of meaningful inter-sample relationships.

34

3.1. SYSTEM STRUCTURE 35

3.1 System Structure

The system for detecting derivative malware samples was developed around Viper1, a unified

framework designed to facilitate the static analysis of arbitrary files (Guarnieri, 2015c). This

framework was extended through the creation of custom modules: separate scripts that are

dynamically loaded each time Viper is launched and which encapsulate a distinct sample pro-

cessing or analytical capability. Groups of these modules were used to extract relevant features

for analysis, compare these features with those of other samples, and finally create and visu-

alise similarity matrices in an attempt to identify relationships within a collection of malware

samples. A full list of the modules that were developed for the system is given in Appendix B.

Figure 3.1 demonstrates the path of malware samples through the system. To begin with,

samples obtained from the malware collection maintained by the VirusTotal online analysis

framework and other Internet sources are passed to the decoder, a component designed to

perform static code deobfuscation and normalisation prior to analysis. This component produces

raw and decoded versions of each malware sample, both of which are then stored in Viper’s

central repository. These samples are subsequently processed by the batch modules, which

prepare samples for similarity analysis by extracting relevant and comparable features. The

batch modules in turn rely on the logic implemented in the individual modules, the latter of

which were designed to be run against a single sample at a time.

Once code normalisation and feature extraction have been completed, the matrix module is used

to compare these features by creating similarity matrices that represent the observed similarity

between a given collection of malware samples. These matrices are passed to the visualisation

modules, which generate graphical interpretations of the matrices to assist in the identification

of meaningful sample relationships.

A Note on System Design

Although primarily used as a research tool, the similarity analysis system was developed with

the ultimate goal of being integrated into the Viper framework as a PHP-specific extension. For

this reason, the design choices illustrated throughout this chapter were made based on guidelines

laid out by the Viper community. Emphasis was placed on user-friendliness and portability, and

features such as usage instructions, exception handling, input validation, and relative file paths

were therefore implemented wherever necessary. Although these features are tangential to the

core functioning of the system and are not discussed in great detail for the remainder of this

chapter, they are noted here for the sake of completeness.

1https://github.com/viper-framework/viper

3.2. DOWNLOAD SCRIPTS 36

Figure 3.1: System structure

3.2 Download Scripts

Although the malware samples used in this research were obtained from a variety of online

sources (see Section 4.1 for a detailed source breakdown), the vast majority were retrieved from

the collection of samples maintained by the VirusTotal online analysis service. As discussed in

Section 2.7, VirusTotal allows researchers and commercial clients with access to a private API

key to download samples that have been submitted by other users. This is achieved by making

scripted search and download queries to the service’s online API VirusTotal Team (2015b).

Two python scripts were created to automate the sample retrieval process. The first is respon-

sible for creating, encoding, and submitting the search query and adding the results to the local

list of hash identifiers, while the second handles the submission of download requests and the

addition of the returned samples to the test collection.

3.3. DECODER 37

3.2.1 Fetch

The purpose of the Fetch.py script is to craft and submit search queries to VirusTotal’s private

API, and to merge the list of returned hash identifiers with a list of those already in the collection.

The query string is parameterised in such a way as to limit the results to RATs written in PHP.

Additionally, only samples that have been identified as being malicious by at least one antivirus

engine are included in the request. The full parameterised fetch query is shown in Listing 3.1.

params = urllib.urlencode({‘apikey’: key,
‘query’: ‘type:php engines:"Backdoor:PHP" positives:1+’,
‘offset’: offset})

Listing 3.1: Parameterised VirusTotal fetch query

The ‘offset’ parameter in Listing 3.1 is used to paginate the results of the search in cases

where more than 300 matches are found. Thus, to download the complete set of 1 969 hashes

matching this particular query, it was necessary to store the offset value between query submis-

sions. To avoid the addition of duplicate hashes when the script is run multiple times, this offset

is also written to file after every query submission. Listing 3.2 shows how this is achieved in the

main loop of the Fetch.py script.

3.2.2 Download

The purpose of the Download.py script is to create separate retrieval requests for each hash in

the current list of hashes, and to store the results of these requests as they are processed. Each

download request requires the MD5 hash of the desired sample, as is shown in Listing 3.3.

Unlike the search queries described in Section 3.2.1, download requests must be made individu-

ally and each returns the binary content of a single file. This content is then written to file by

the script, as is demonstrated by the extract from the Download.py script shown in listing 3.4.

3.3 Decoder

The first of the major components developed for the system was the decoder, which is responsible

for performing code deobfuscation and normalisation prior to analysis. Deobfuscation is the

process of revealing code that has been deliberately disguised, while code normalisation is the

process of altering the format of a script to promote readability and uniformity (Preda and

Giacobazzi, 2005). Figure

3.3. DECODER 38

1 ...
2
3 while(True):
4 # Specify the query parameters
5 params = urllib.urlencode({’apikey’: key,
6 ’query’: ’type:php engines:"Backdoor:PHP" positives:1+’,
7 ’offset’: offset})
8
9 # Submit the query

10 try:
11 request = urllib2.Request(url, params)
12 response = urllib2.urlopen(request)
13 response_data = response.read()
14 except URLError as e:
15 print("Failed: {0}".format(e))
16 break
17
18 # Extract the JSON object
19 try:
20 data = json.loads(response_data)
21 except ValueError as e:
22 print("Failed: {0}".format(e))
23 break
24
25 # If successful, write the hashes and the offset to file
26 if data[’response_code’] == 1:
27 with open(hash_file, ’a’) as f:
28 for item in data[’hashes’]:
29 f.write(item + ’\n’)
30 offset = data[’offset’]
31 with open(offset_file, ’w’) as f:
32 f.write(offset)
33 else:
34 break
35
36 ...

Listing 3.2: Fetch.py extract demonstrating the hash retrieval loop

The decoder is considered a static deobfuscator in that it manipulates the code without ever

executing it. The advantage of this approach is that it suffers from none of the risks associ-

ated with malicious software execution, such as the unintentional inclusion of remote files, the

overwriting of system files, or the loss of confidential information. Static analysers are however

unable to access runtime information (such as the value of a variable at any given time or the

current program state) and are thus limited in terms of behavioural analysis.

The purpose of this component is to expose the underlying program logic of a given shell by re-

moving any layers of obfuscation that may have been added by the shell’s developer. This process

is controlled by the decode function, which is described in Section 3.3.1. It makes use of two

core supporting functions, processEvals() and processPregReplace(), the details of

which are provided in Sections 3.3.2 and 3.3.3, respectively. Post-processing correction and nor-

3.3. DECODER 39

params = urllib.urlencode({’apikey’: key, ’hash’: line.strip() })

Listing 3.3: Parameterised VirusTotal download query

1 ...
2
3 for line in hashes:
4 # Specify the query parameters
5 params = urllib.urlencode({’apikey’: key, ’hash’: line.strip() })
6
7 # Submit the query
8 try:
9 request = urllib2.Request(url, params)

10 response = urllib2.urlopen(request)
11 response_data = response.read()
12 except URLException as e:
13 print("Failed: {0}".format(e))
14 continue
15
16 # Store the downloaded sample
17 with open(download_folder + line, ’w’) as f:
18 f.write(response_data)
19
20 ...

Listing 3.4: Download.py extract showing the file retrieval and storage loop

malisation of code is performed by the normalise() function described in Section 3.3.4, while

the statistics gathered during the deobfuscation process are recorded by the WriteStats()

function, which is described in Section 3.3.5.

The class diagram for the decoder component is shown in in Figure 3.2. In addition to the five

previously described functions, the component also keeps track of seven main global variables,

including $original, which stores the raw version of the input file, and $decoded, which

contains the deobfuscated and normalised version after processing. The five remaining variables

are used to record statistics relating to the deobfuscation process, including the time taken to

process the file, the depth of the obfuscation, the number of eval() and preg_replace()

constructs that were encountered, and the different combinations of auxiliary string manipulation

functions that were used in within the eval() functions.

3.3.1 decode()

The part of the decoder responsible for removing layers of obfuscation from PHP shells is the

decode() function. It scans the code for the two functions most associated with obfuscation,

namely eval() and preg_replace(), both of which are capable of arbitrarily executing

3.3. DECODER 40

Figure 3.2: Class diagram for the decoder component

PHP code. The eval() function interprets its string argument as PHP code, while preg_-

replace() can be made to perform an eval() on the result of its regular expression search

and replace by including the deprecated ‘/e’ modifier. Furthermore, eval() is often used

in conjunction with auxiliary string manipulation and compression functions in an attempt to

further obfuscate the code (see Section 3.3.2 for more details on how this is achieved).

Once an eval() or preg_replace() is found in the script, either the processEvals()

or the processPregReplace() helper function is called to extract the offending construct

and replace it with the code that it represents. To deal with nested obfuscation techniques, this

process is repeated until neither of the functions is detected in the code. Some code normalisation

is then performed to transform the output into a readable format before the decoded shell is

stored in the database alongside its raw counterpart. The complete pseudo-code of this process

is presented in Listing 3.5.

BEGIN
Format the code
WHILE there is still an eval or preg_replace

Increment the obfuscation depth
Process the eval(s)
Format the code
Process the preg_replace(s)
Format the code

END WHILE

Perform normalisation
Store the decoded shell in the database

END

Listing 3.5: Psuedo-code for the decode() function

3.3. DECODER 41

Both the processEvals() and processPregReplace() functions rely on string process-

ing techniques to locate and extract eval() and preg_replace() constructs. Extraneous

whitespace characters can cause these techniques to malfunction and extract sections of code

that are not related to a given construct, and must thus be removed from the input script

prior to deobfuscation. This process is repeated after each iteration of the processEvals()

and processPregReplace() functions to ensure that whitespace is also removed from the

newly-visible sections of code.

3.3.2 processEvals()

The eval() function is able to evaluate an arbitrary string as PHP code, and as such, is widely

used as a method for obfuscating code. The function is so commonly exploited that the PHP

group includes a warning against its use – it is recommended that it only be used in controlled

situations, and that user-supplied data be strictly validated before being passed to the function.

(PHP Group, 2015b)

As described in Section 2.6, authors of malicious software often use the eval() function in

conjunction with other string manipulation functions to further frustrate reverse engineering at-

tempts. These functions typically compress, encode, or otherwise modify the string argument to

increase the complexity of the obfuscation, thereby increasing its resilience to automated anal-

ysis. The processEvals() function is able to detect and perform some of the more common

string manipulation functions in an attempt to reveal the obfuscated code. The functions that

processEvals() is currently able to detect and process are listed in Table 3.1.

Table 3.1: Auxiliary string manipulation functions handled by processEvals()

Auxiliary Function Description

base64_decode() Decodes data encoded using base64_encode()

gzinflate() Inflates a string compressed using gzdeflate()

gzuncompress() Decompresses data packed using gzcompress()

str_rot13() Restores a string encoded using str_rot13()

strrev() Restores a string reversed using strrev()

rawurldecode() Decodes a string encoded using rawurlencode()

stripslashes() Unescapes a string

trim() Strips whitespace from the beginning and end of a string

The processEvals() function was designed to be extensible. At its core is a switch statement

used to apply auxiliary functions to the string argument. Adding another function to the list

already supported by the system can be achieved by simply adding a case for that function. In

future, the system could be extended to apply functions that it has not encountered before or

been explicitly programmed to deal with. This possible extension to the system is discussed in

more detail in Chapter 4.

3.3. DECODER 42

Listing 3.6 gives the complete pseudo-code for the processEvals() function. To begin with,

string processing techniques are used to detect the eval() constructs and any auxiliary string

manipulation functions contained within them. The eval() is then removed from the script

and its argument is stored as a string variable. Auxiliary functions are detected and stored in an

array, which is then reversed allowing each function to be applied to the argument. The result

of this process is re-inserted into the shell in place of the original construct.

BEGIN
WHILE there is still an eval in the script

IF the eval contains a string argument
Find the starting position
Find the end position
Remove the eval from the script
Extract the string argument
Count the number of auxiliary functions
Populate the array of functions
Reverse the array

FOR every function in the reversed array
Apply the function to the argument

END FOR
END IF
Insert the resulting code

END

Listing 3.6: Psuedo-code for the processEvals() function

As a static deobfuscation component, the processPregReplace() function is unable to pro-

cess eval() constructs with variable arguments, as the value of the argument can only be resolved

at runtime. For this reason, the function currently ignores eval() statements that contain vari-

ables. In future, this limitation could be overcome by providing the processEvals() function

with runtime information obtained through dynamic analysis, as is discussed in Section 5.3.

3.3.3 processPregReplace()

The preg_replace() function is used to perform a regular expression search and replace in

PHP (PHP Group, 2015g). The danger of executing the function lies in the use of the ‘/e’

modifier. If this modifier is included at the end of the search pattern, the interpreter performs

the replacement and then evaluates the result as PHP code, but the system prevents this from

happening, as demonstrated in Listing 3.7. Although the ‘/e’ modifier was deprecated in

version 5.5.0 and will be completely removed in version 7, many of the malware samples in the

collection still make use of it.

Listing 3.7 shows the complete pseudo-code of the processPregReplace() function, which

is tasked with detecting preg_replace() calls in a script and replacing them with the code

3.3. DECODER 43

BEGIN
WHILE there is still a preg_replace

IF the preg_replace contains string arguments
Find the starting position
Find the end position
Remove the preg_replace from the script
Extract the string arguments
Remove the ’/e’ from first argument
to prevent evaluation
Perform the preg_replace
Insert the deobfuscated code

END IF
END WHILE

END

Listing 3.7: Psuedo-code for the processPregReplace() function

that they were attempting to obfuscate. In much the same way as the processEvals()

function, string processing techniques are used to extract the preg_replace() construct from

the script. Its three string arguments are stored in separate string variables and, if detected,

the ‘/e’ modifier is removed from the first argument to prevent the resulting text from being

interpreted as PHP code. The preg_replace() can then be safely executed and its result

can be inserted back into the script.

3.3.4 normalise()

Many of the outputs of the feature extraction modules described later in this chapter are af-

fected by the layout of the scripts that are passed to them. Furthermore, it was found that the

deobfuscation operations performed by the processEvals() and processPregReplace()

functions often produced unpredictable and irregularly formatted code. To mitigate the ef-

fects of arbitrary formatting constructs on the results of the similarity analysis process, the

normalise() function was created.

The purpose of the normalise() function is to apply a uniform formatting convention to

every shell sample after the deobfuscation process has been completed. An expedient way of

achieving this is to pass the script to a PHP parser which creates an AST (as described in Section

2.8.2). All the original formatting is lost during the parsing process, as the AST only stores the

lexical tokens found in the script. These tokens can be output according to a predefined set of

formatting rules, ensuring that every sample conforms to the same formatting scheme.

Although the Zend engine for interpreting PHP can be used to split source code into a stream

of PHP tokens (see Section 2.8.1 for more details about the Tokenizer extension), it lacks the

functionality to construct an AST and output it in a uniform way. For this reason, an open source

lexical parser and pretty printer called PHP-Parser was used to construct the AST and overwrite

3.3. DECODER 44

the existing sample text. Listing 3.8 gives the implementation of the layout normalisation

function.

1 // Initialise parser and pretty printer
2 $parser = new PhpParser\Parser(new PhpParser\Lexer\Emulative);
3 $prettyPrinter = new PhpParser\PrettyPrinter\Standard;
4
5 ...
6
7 function normalise()
8 {
9 global $decoded, $parser, $prettyPrinter;

10
11 // Parse
12 $stmts = $parser->parse($decoded);
13
14 // Pretty print
15 $decoded = $prettyPrinter->prettyPrint($stmts);
16 }
17
18 ...
19

Listing 3.8: Decode.php extract showing the implementation of the normalise() function

After its instantiation, the lexical parser is used to parse the deobfuscated code into an AST,

which is stored in the $stmts variable in line 8. The choice of the emulative parser allows the

decoder component to parse code from versions of PHP that are newer than the version that it

itself is running on. The resulting AST is reformatted by the pretty printer, and the original

script is overwritten in line 15.

3.3.5 writeStats()

The purpose of the writeStats() function is to record information about the deobfuscation

and normalisation processes for future analysis. While processing each file, the decoder keeps

track of metrics such as the number of eval() and preg_replace() constructs it has en-

countered, as well as the depth of the obfuscation resulting from their use. The time taken to

process each sample is also recorded, as is a list of any auxiliary functions used as part of a

compound eval() statement. The latter is encoded as a JSON object and stored in a separate

file for ease of access when calculating cross-sample statistics (refer to Section 4.3 for a detailed

description of how this is carried out).

Listing 3.9 details the simple implementation of the writeStats() function. The global

variables in line 3 are updated throughout the decoding process, and therefore represent the final

values that must be written to file. These metrics are later used to determine both the prevalence

3.4. VIPER FRAMEWORK 45

of idiomatic obfuscation constructs in the sample collection, as well as the performance of the

decoder component as a whole.

1 function write_stats()
2 {
3 global $path, $depth, $time, $numEvals, $numPregReplaces, $functionArrays;
4
5 $file = fopen($path."(stats)", "w");
6 fwrite($file, $depth."\n");
7 fwrite($file, $time."\n");
8 fwrite($file, $numEvals."\n");
9 fwrite($file, $numPregReplaces);

10 fclose($file);
11
12 $file = fopen($path."(function_arrays)", "w");
13 $json = json_encode($functionArrays);
14 fwrite($file, $json);
15 fclose($file);
16 }
17

Listing 3.9: Decode.php extract showing the implementation of the writeStats() function

3.4 Viper Framework

Viper (Guarnieri, 2015c) is a unified framework designed to facilitate the static analysis of

arbitrary files. It consists of commands (core functions used to open, close, delete, and tag

file samples) and modules, which are dynamically loaded and can be run against either an

open file or any number of files from the database. This modular design makes the framework

highly extensible – extra functionality can be added by simply creating a new module. It is this

extensibility that prompted Viper’s use as the basis for this research.

3.4.1 Projects

Malware samples in Viper can be organised into separate projects (Guarnieri, 2015d). Every

project maintains its own repository of binary files, and an arbitrary number of projects can be

created. All commands and modules in Viper can only be run against samples that form part

of the project currently open.

Viper projects are particularly useful when dealing with large malware collections, as they allow

specific families of samples to be stored and analysed separately. Once it has been determined

that a group of samples share a common feature, it is a simple matter to transfer these samples

into a new project for further analysis. Tests run against a smaller selection of samples are more

3.4. VIPER FRAMEWORK 46

expedient, and the resulting graphs are more concise, allowing for faster and more accurate

conclusions to be drawn.

Projects in Viper can be specified at startup using the ‘-p’ argument followed by the name of

the project. If the project exists, Viper opens it, otherwise a new project is created. Figure 3.3

demonstrates how an existing project named ‘c99’ is opened in Viper.

Figure 3.3: Opening an existing project using Viper

It is also possible to list all available projects and switch between them without restarting Viper.

The ‘projects --list’ command prints a list of Viper projects, while the ‘projects

--switch’ command switches the project context, as is shown in Figure 3.4.

3.4.2 Sessions

Access to a specific malware sample in Viper is achieved by opening a Viper session (Guarnieri,

2015e), either by searching for the sample by name or by specifying its MD5 hash. Most of the

commands and the modules provided in the core Viper framework are designed to be run on

a single file and require a session, but any module can access multiple files by retrieving them

from the database (see Section 3.4.3 for information on how this is achieved).

Session objects are used to provide modules with information about the sample that is currently

open. A global __sessions__ object provides access to the current session object (__-

sessions__.current), a list of all open session objects (__sessions__.sessions), and

a list containing the results of the last find command that was executed (see Section 3.4.4 for

more information on commands in Viper). A summary of the information that each session

object encapsulates is provided in Table 3.2.

Sessions opened during the current execution of Viper can be viewed and switched to in much

the same way as the projects described in Section 3.4.1. This functionality is accessed through

3.4. VIPER FRAMEWORK 47

Figure 3.4: Listing and switching between different projects using Viper

the ‘sessions --list’ and ‘sessions --switch’ commands, respectively, as is demon-

strated in Figure 3.5. Duplicate sessions are not permitted – each time a new session is created

using a file that is already open in another session, the older session will be deleted.

The individual modules developed for this research (and described in Section 3.5) all require

that an active session be open on the sample that needs to be processed. This is because these

modules rely on the session attributes listed in Table 3.2 in order to perform their respective

tasks. An extract from the Decode.py module shown in Listing 3.10 demonstrates how the is_-

set() function of the global __sessions__ object is used to check for the presence of an

open session in line 8.

3.4.3 Database

The Viper sessions discussed in the previous section provide a more accessible way to access

information about a single sample without resorting to database queries. If a module requires

access to multiple samples, it must import and interact with the Database class, which acts as a

wrapper for the SQLite2 database used to organise and store malware samples. Once imported,

2https://www.sqlite.org/

3.4. VIPER FRAMEWORK 48

Table 3.2: Attributes of a __session__ object in Viper

Session Attribute Description

sessions .current.file.path Aabsolute path of the current file

sessions .current.file.name Name of the current file

sessions .current.file.size Size (in bytes) of the current file

sessions .current.file.type Type and encoding of the current file

sessions .current.file.mime MIME type and subtype of the current file

sessions .current.file.md5 MD5 hash of the current file

sessions .current.file.sha1 SHA-1 hash of the current file

sessions .current.file.sha256 SHA-256 hash of the current file

sessions .current.file.sha512 SHA-512 hash of the current file

sessions .current.file.crc32 CRC-32 check value for the current file

sessions .current.file.tags List of user-defined tags attached to the current file

Figure 3.5: Listing and switching between different sessions using Viper

the Database object can be used to access the local project repository through the use of the

find() function, which accepts a key and a value as search parameters.

The batch modules described in Section 3.6 all make use of the Database class’ find() function

to retrieve and process all samples in a given project. An extract from the Decode All.py module

shown in Listing 3.11 details how this is achieved in lines 13 and 14.

3.4.4 Commands

Simple sample access and modification operations in Viper are carried out using commands

(Guarnieri, 2015b). This set of core operations allows a user to open, close, delete, store, or tag

an open binary file, as well as display an overview of its characteristics. Table 3.3 details all the

available Viper commands and their respective uses.

3.4. VIPER FRAMEWORK 49

1 class Decode(Module):
2 cmd = ‘decode’
3 description = ‘Reveals code hidden by eval() or preg_replace() constructs’
4
5 def run(self):
6
7 # Check for an open session
8 if not __sessions__.is_set():
9 print_error(’No session opened’)

10 return
11 ...
12

Listing 3.10: Decode.py extract demonstrating the use of the is_set() function

Table 3.3: Viper’s core commands

Command Description

clear Clears the console window

close Closes the current session

delete Deletes the current file

exit Terminates the current execution of Viper

export Saves the surrent session to a specified file

find Searches for a file using a name or hash

help Displays the help dialogue

info Display an overview of the current file

new Creates a new file

notes Allows notes on the current file to be viewed, edited, or deleted

open Opens a specified file using either its SHA-1 or MD5 hash

projects Lists all existing projects

sessions Lists all open sessions

store stores a specified file or folder in the local repository

tags Allows the tags associated with the current file to be viewed, edited, or deleted

3.4.5 Modules

Viper modules are dynamic plugins that encapsulate a distinct analytical capability. Each time

the framework is launched, Python files in the modules directory are registered as Viper modules

and associated with a specified command to allow them to be accessed through Viper’s shell

interface. Modules can either avail themselves of the individual shell information contained in

an open session object (as explained in Section 3.4.2) or make use of the Database class to access

multiple samples from the current project (as explained in Section 3.4.3).

All Viper modules must comply with a specific structure to be recognised by the framework

(Guarnieri, 2015a). New modules must inherit from the abstract Module class and declare com-

mand and description properties. Additionally, all modules must implement a run() function,

as shown in Listing 3.12.

3.5. INDIVIDUAL MODULES 50

1 from viper.core.database import Database
2
3 class Decode_All(Module):
4 cmd = ‘decode_all’
5 description = ‘Reveals code hidden by eval() or preg_replace() constructs
6 in all samples’
7
8 def run(self):
9

10 # Get Viper’s root path
11 viper_path = get_viper_path(__project__.get_path())
12
13 # Retrieve all the samples from the database
14 db = Database()
15 samples = db.find(key=‘all’)
16
17 # Decode all samples
18 for sample in samples:
19 ...
20

Listing 3.11: Decode All.py extract demonstrating the use of the find() function

1 from viper.common.abstracts import Module
2
3 class NewModule(Module):
4 cmd = ‘new_module’
5 description = ‘new_module description’
6
7 def run(self):
8 ...
9

Listing 3.12: Structure of a generic Viper module

3.5 Individual Modules

Four preprocessing modules were created to process samples in different ways to prepare them

for similarity analysis. Each of these modules was designed to be run against a single shell

sample, and require that a Viper session already exists (see Section 3.4.2 for more information

on sessions in Viper). Both HashChunks.py and HtmlDump.py process samples in their entirety

and produce a new file, whereas Functions.py and FunctionBodies.py extract and store relevant

features for analysis. A list of all the individual modules, their associated commands, and a

short description of their functionality is displayed in Table 3.4.

All but one of the individual modules make use of external PHP scripts to carry out their tasks.

This is due to the presence of functions and extensions in the core PHP library that directly

support the deconstruction and analysis of PHP code. A good example of this is the Tokenizer

3.5. INDIVIDUAL MODULES 51

Table 3.4: Individual modules and their descriptions

Module Command Description

FunctionBodies.py bodies Extracts user-defined function bodies from an sample

Functions.py functions Creates a list of user-defined functions for an open sample

HashChunks.py chunks Splits an open sample into fixed-size chunks and hashes each chunk

HtmlDump.py html_dump Generates and stores an HTML dump for an open sample

extension, which is used by both the Functions.php and FunctionBodies.php helper scripts to

extract the names and bodies of user-defined functions on behalf of their Viper parent modules

(Functions.py and FunctionBodies.py, respectively).

Interactions between the Viper modules and their helper scripts are facilitated by Python’s

subprocess module, which allows for the creation and execution of separate child processes

(Python Software Foundation). The module’s check_output() function allows a Python

script to run a command with a list of arguments and capture the output as a byte string. This

string can then be written to file by the parent module for use during the similarity analysis

process.

The check_output() function accepts a list of command line arguments that are used to start

a new process. The list of arguments used by the individual modules to start an external PHP

script is given in Listing 3.13.

subprocess.check_output([’php’, ’-f’,
viper_path + ’/modules/FunctionBodies.php’, path])

Listing 3.13: List of arguments passed to the check_output() function

The path to the helper script in Listing 3.13 is determined by appending an appropriate extension

to the root Viper installation path (in this case ‘/modules/FunctionBodies.php’), where the

‘path’ argument represents the absolute path to the sample that the script should be run

against. The root installation path is retrieved by calling the get_viper_path() function

that was added to Viper’s utils script, while the path to the sample is retrieved by accessing the

current session object, as shown in Listing 3.14.

Along with all of the other Viper extension modules developed as part of the similarity analysis

system, the individual modules all include comprehensive usage instructions. This is in keeping

with the goal outlined in Section 3.1, which is to integrate the current similarity analysis system

for PHP files into the existing Viper framework. Figure 3.6 shows an example of the usage

instructions for the Dendrogram.py visualisation module.

3.5. INDIVIDUAL MODULES 52

1 ...
2
3 # Get Viper’s root path
4 viper_path = get_viper_path(__project__.get_path())
5
6 # Get the file path for use by the FunctionBodies.php script
7 path = __sessions__.current.file.path
8
9 ...

Listing 3.14: Code extract demonstrating the retrieval of the root Viper path and sample path

Figure 3.6: Example of the help dialogue for the Dendrogram.py visualisation module

3.5.1 FunctionBodies.py

The purpose of the FunctionBodies.py module is to extract the contents of all user-defined func-

tion bodies present in a malware sample for subsequent comparative analysis. The identification

and extraction of these bodies required that the samples be separated into tokens, which was

more easily achieved using PHP itself. For this reason, the FunctionBodies.py module makes use

of an external PHP script, as shown on lines 5 and 6 of Listing 3.15. Lines 7 and 8 demonstrate

how the output returned from the external script is appended with the ‘(bodies)’ identifier

and written to file alongside the original.

The external FunctionBodies.php script makes use of PHP’s Tokenizer extension (which is dis-

cussed in more detail in Section 2.8.1) to identify and extract the bodies of user-defined functions

(PHP Group, 2015h). At the start, the source code is split into a stream of PHP language to-

kens and basic characters using the token_get_all() function, which interfaces with the

Zend engine’s lexical scanner. These tokens and characters are consumed one by one until a

3.5. INDIVIDUAL MODULES 53

1 ...
2
3 # Call the FunctionBodies.php script and store its output
4 try:
5 output = subprocess.check_output([’php’, ’-f’,
6 viper_path + ’/modules/FunctionBodies.php’, path])
7 f = open(path + ’(bodies)’, ’w’)
8 f.write(output)
9 f.close()

10 print_success(’Complete’)
11 except subprocess.CalledProcessError:
12 print_error(’Failed to reach the FunctionBodies.php script’)
13
14 ...

Listing 3.15: FunctionBodies.py extract demonstrating the interaction with the FunctionBod-
ies.php helper script

T_FUNCTION token is found. Once a this token has been found, tokens and characters are

consumed until an opening curly bracket character is found, signifying the start of a function

body. Thereafter, curly brackets are counted (and tokens and characters recorded) until the final

closing curly bracket is reached, at which point the body is returned to the FunctionBodies.py

module. The implementation of this logic is shown as pseudo-code in Listing 3.16.

3.5.2 Functions.py

The Functions.py module is similar to the FunctionBodies.py module, but it extracts only the

names of any user-defined functions and ignores their associated bodies. As was the case with

the FunctionBodies.py module, this feature extraction process is performed by an external PHP

script, as shown in lines 5 and 6 of Listing 3.17. Lines 7 and 8 demonstrate how the output

returned from the external script is appended with the ‘(functions)’ identifier before being

written to file alongside the original.

The Functions.php helper script also makes use of PHP’s built in Tokenizer extension to iden-

tify and extract the names of user-defined functions from a given sample (PHP Group, 2015h).

Firstly, a stream of PHP language tokens and basic characters is created from the source code

using the token_get_all() function. These tokens and characters are then consumed until a

T_FUNCTION token is found, indicating the start of a function definition. Once a T_FUNCTION

token has been found, the next T_STRING token or basic character is returned to the Func-

tions.py parent module as the name of the user-defined function. The full pseudo-code of the

Functions.php helper script is shown in Listing 3.18.

3.5. INDIVIDUAL MODULES 54

BEGIN
Split sample into PHP tokens and characters
FOR every token or character

IF it is a token
IF FoundStarting
Add token to body

ELSE IF the token is a function
FoundFunction is true

END IF
ELSE

IF FoundFunction but not FoundStarting and character is ‘{’
FoundFirstBracket is true
BracketCount is 1
Add character to body

ELSE IF FoundFunction and FoundStarting and character is ‘{’
BracketCount = BracketCount + 1
Add character to body

ELSE IF FoundFunction and FoundStarting and character is ‘}’
BracketCount = BracketCount - 1
Add character to body

ELSE IF FoundFunction and FoundStarting and character isn’t ‘{’ or ‘}’
Add character to body

END IF

IF BracketCount is 0
Output body to Decode.py
Reset FoundFunction, FoundStarting, and BracketCount

END IF
END IF

END FOR
END

Listing 3.16: Psuedo-code describing the logic implemented in the FunctionBodies.php helper
script

3.5.3 HashChunks.py

The purpose of the HashChunks.py module is to separate a file into chunks of equal length and to

hash each chunk using Ssdeep, an algorithm capable of producing fuzzy hashes (see Section 2.9.4

for more information on fuzzy hashing). Unlike the Functions.py and FunctionBodies.py modules,

it does not rely on a PHP helper script to perform this task. This is due to the existence of

Pydeep, a collection of Python bindings for the Ssdeep library, which was originally written in

C. Section 2.10 provides a comprehensive description of both Ssdeep and the Pydeep Python

wrapper.

Listing 3.19 shows an extract from the HashChunks.py module that demonstrates the separation

and hashing of a given sample. At first, unnecessary formatting is removed from the code to

reduce the number of chunks needed for each file, thereby speeding up the hashing process.

Because this modification is applied uniformly to all samples before any analysis takes place, it

has no effect on the similarity scores calculated by the Matrix.py module (which is described in

3.5. INDIVIDUAL MODULES 55

1 ...
2
3 # Call the Functions.php script and store its output
4 try:
5 output = subprocess.check_output([’php’, ’-f’,
6 viper_path + ’/modules/Functions.php’, path])
7 f = open(path + ’(functions)’, ’w’)
8 f.write(output)
9 f.close()

10 print_success(’Complete’)
11 except subprocess.CalledProcessError:
12 print_error(’Failed to reach the Functions.php script’)
13
14 ...

Listing 3.17: Functions.py extract demonstrating the interaction with the Functions.php helper
script

BEGIN
Split sample into PHP tokens and characters
FOR every token or character

IF it is a token
IF the token is a function
FoundFunction is true

ELSE IF FoundFunction and the token is a string
Output the string to Functions.py
FoundFunction is false

END IF
ELSE IF FoundFunction

Output the character to Functions.py
FoundFunction is false

END IF
END FOR

END

Listing 3.18: Psuedo-code describing the logic implemented in the Functions.php helper script

more detail in Section 3.7).

Once the sample has been stripped of all whitespace characters, it is divided into chunks of 200

characters each. This value was chosen as a result of a documented limitation of the Pydeep

library’s compare() function that causes it to assign incorrect similarity scores to identical

chunks when the lengths of the chunks fall below 193 characters (refer to Section 2.10.4 for a

description of this effect). Each chunk is then hashed using Pydeep’s hash_buf() function

before being written to file for future use.

3.5. INDIVIDUAL MODULES 56

1 ...
2
3 # Remove whitespace
4 contents = contents.replace(’ ’, ’’)
5 contents = contents.replace(’\t’, ’’)
6 contents = contents.replace(’\n’, ’’)
7
8 # Split into chunks
9 chunks = [contents[i:i+200] for i in range(0, len(contents), 200)]

10
11 # Hash every chunk and write it to file
12 for chunk in chunks:
13 hashed_chunk = pydeep.hash_buf(chunk)
14 f.write(hashed_chunk + ’\n’)
15 f.close()
16 print_success(’Complete’)
17
18 ...

Listing 3.19: HashChunks.py extract demonstrating how each sample is separated and hashed

3.5.4 HtmlDump.py

The HtmlDump.py module is used to execute a given sample and record the HTML that it

produces for future analysis. This is trivially achieved by including the file in a PHP script (using

the include() statement) and monitoring the output. The HtmlDump.py module therefore

makes use of the external HtmlDump.php script to run a shell, store its output in a buffer, and

then return this buffer to the parent Python module, as demonstrated in Listing 3.20 in lines 5

and 6. Lines 7 and 8 show how the output obtained from the external script is appended with

the ‘(html)’ identifier before being written to file alongside the original sample.

1 ...
2
3 # Call the HtmlDump.php script and store its output
4 try:
5 output = subprocess.check_output([’php’, ’-f’,
6 viper_path + ’/modules/html_dump.php’, path])
7 f = open(path + ’(html)’, ’w’)
8 f.write(output)
9 f.close()

10 print_success(’Complete’)
11 except subprocess.CalledProcessError:
12 f = open(path + ’(html)’, ’w’)
13 f.write(’failed’)
14 f.close()
15
16 ...

Listing 3.20: HtmlDump.py extract demonstrating the interaction with the HtmlDump.php helper
script

3.6. BATCH MODULES 57

As can be seen in lines 11 to 14, the exception clause associated with the call to the external

HtmlDump.php script differs from those present in the other individual modules. This is be-

cause several of the samples used during the testing process contained malformed HTML code

that would cause the include() statement to throw an exception, which would be stored in

the buffer and returned to the HtmlDump.py parent module. To avoid these exceptions being

compared against syntactically correct HTML during the similarity analysis process (thereby

influencing the results), a failure message is stored in its place. Section 3.7.3 demonstrates how

HTML failure messages are handled during similarity analysis.

1 ...
2
3 ob_start();
4
5 include($path);
6
7 echo ob_get_contents();
8
9 ob_end_clean();

10
11 ...
12 }
13

Listing 3.21: HtmlDump.php extract demonstrating the output buffering process

Listing 3.21 demonstrates how the HtmlDump.php helper script uses PHP’s output control func-

tions (PHP Group) to process a sample and buffer its output before returning it to the parent

module. Output buffering is enabled using the ob_start() function in line 3. After inclusion

and processing of the sample file, the content of the buffer is retrieved and echoed to the Python

parent module via the ob_get_contents() function in line 7. Finally, the buffer is cleared

and output buffering is disabled using the ob_end_clean() function in line 9.

3.6 Batch Modules

The batch modules contain no feature extraction or sample processing capabilities of their own,

but rather apply each of the individual modules to all the samples in the current project (see

Section 3.4.1 for more information on projects in Viper). The purpose of the batch modules is

to prepare an entire collection of samples for comparison by the Matrix.py module. Each of the

command line options contained in this comparison module (apart from a special case involving

unprocessed samples) require that a specific batch module already be complete. A list of the

batch modules and a short description of their functionality is given in Table 3.5.

Each of the batch modules can be run against either raw or decoded shell samples, with the

exception of HtmlDumpAll.py. The target set can be specified by appending the desired command

3.7. MATRIX MODULE 58

Table 3.5: Batch modules and their descriptions

Module Command Description

FunctionBodiesAll.py bodies_all Extracts user-defined function bodies from all samples

FunctionsAll.py functions_all Creates a list of functions for all samples

HashChunksAll.py chucks_all Splits all samples into fixed-size chunks and hashes each chunk

HtmlDumpAll.py html_dump_all Generates and stores an HTML dump for all samples

with either ‘-r’ (for the raw set) or ‘-d’ (for the decoded set). If the decoded set is selected,

the module first determines whether all samples have been decoded before proceeding with the

batch processing. This test is conducted by the all_decoded() function, which searches for

the presence of decoded files in the Viper repository (see Listing 3.22).

The batch modules originally included options to generate HTML dumps for both raw and

decoded sample sets, but this was found to be unnecessary. During testing it was discovered

that both raw and decoded versions of the same sample always generated the same HTML

output, and the ability to target both sample sets was thus removed from the system.

1 def all_decoded(self, sample_names):
2 for sample in sample_names:
3 path = get_sample_path(sample) + ’(decoded)’
4 try:
5 f = open(path)
6 f.close()
7 except IOError:
8 print_error(’Not all samples have been decoded.
9 Run the decode_all command and then try again’)

10 return False
11 return True

Listing 3.22: Implementation of the all_decoded() function

3.7 Matrix Module

The purpose of the Matrix.py module is to produce matrices that represent the observed similarity

between all samples in a given collection based on a specified metric. This module relies on

the feature extraction and sample processing performed by the aforementioned batch functions

(which in turn rely on the individual functions to perform their tasks). In addition to creating

and populating similarity matrices, the Matrix.py module also produces a list of sample labels.

These labels are written to file for later use as axis markers by the Heatmap.py and Dendrogram.py

visualisation modules.

Several options can be passed to the Matrix.py module. Each option represents the measure

of similarity that should be used to generate a similarity matrix. If one would like to view

3.7. MATRIX MODULE 59

the similarity of user-defined function names between raw shells in a project, for example, the

command would be ‘matrix -f raw’. To make use of the same measure of similarity (i.e.,

function name matches) on decoded shells in a project, the command would be ‘matrix -f

decoded’. A full list of the available option combinations is given in Table 3.6.

Table 3.6: Possible option combinations for Matrix.py

Options Description

-b raw Compares the function bodies of raw samples

-b decoded Compares the function bodies of decoded samples

-f raw Compares the function names of raw samples

-f decoded Compares the function names of decoded samples

-c raw Compares the hashed chunks of raw samples

-c decoded Compares the hashed chunks of decoded samples

-H Compares the HTML dumps generated by samples

3.7.1 Preliminary Setup

The Matrix.py module performs some preliminary tasks regardless of the chosen option combi-

nation. These steps were separated from the different matrix creation processes to avoid any

unnecessary repetition of code and are given in Listing 3.23.

First, the path to the root Viper installation is determined to act as a reference point for all file

I/O operations performed during matrix creation. As discussed in Section 3.1, the system was

designed with other users in mind; for this reason, lines 6 to 13 check for the existence of the

‘data/matrix’ and ‘data/labels’ directories, which are required for matrix creation but do not

form part of the default Viper installation. If these directories are not found, they are created

by appending the appropriate extension to the root Viper path.

The name of the current Viper project is used to link the project with its associated matrix and

label files. Lines 15 to 18 attempt to retrieve the project name from the global __project_-

_ object. If no name is found, Viper’s default project is active, and an empty string is assigned

to the ‘project’ variable.

The remainder of Listing 3.23 (lines 20 through 33) prepares a list of samples for comparison

and allocates an appropriately sized two-dimensional array to store the resulting matrix. This

is done by using Viper’s Database class to access all project samples via the find() function

before creating a list of sample names from the resulting object list. The length of this list is

used to create the two-dimensional array.

3.7. MATRIX MODULE 60

1 ...
2
3 # Get Viper’s root path
4 viper_path = get_viper_path(__project__.get_path())
5
6 # Check that the label and matrix folders exist
7 directory = viper_path + ’/data/labels’
8 if not os.path.exists(directory):
9 os.makedirs(directory)

10 directory = viper_path + ’/data/matrix’
11 if not os.path.exists(directory):
12 os.makedirs(directory)
13
14 # Get the project name
15 project = __project__.name
16 if project is None:
17 project = ’’
18
19 # Retrieve all the samples from the database
20 db = Database()
21 samples = db.find(key=’all’)
22
23 # Count the number of samples
24 total = len(samples)
25
26 # Create a list of samples
27 sample_names = []
28 for sample in samples:
29 sample_names.append(str(sample.sha256))
30
31 # Create an appropriately-sized matrix
32 matrix = [[0 for x in range(total)] for x in range(total)]
33
34 ...

Listing 3.23: Matrix.py extract demonstrating the preliminary setup tasks

3.7.2 Matrix Creation

Once a list of sample names and an appropriately-sized matrix have been created during prelim-

inary setup, the matrix is populated by comparing every sample in a given project to every other

sample using a specified measure of similarity. This process varies slightly based on the combi-

nation of options passed to the Matrix.py module during invocation. Listing 3.24 demonstrates

how a matrix is computed when the ‘-b raw’ option combination is selected.

First, several tracking variables are created to monitor statistics relating to the similarity analysis

process. As can be seen in lines 17 through 23, the count, total_similarity, mini, and

maxi variables are updated each time a match of any magnitude is found. The maximum value

in this case is taken to be the greatest value detected between two unique samples, and the

update check for a new maximum match thus excludes cases where a sample is being compared

to itself. This was implemented by appending the ‘x != y’ check to the usual maximum test

3.7. MATRIX MODULE 61

1 ...
2
3 if arg_bodies == ’raw’:
4
5 # Populate the similarity matrix
6 count = 0
7 total_similarity = 0
8 mini = matrix[0][0]
9 maxi = matrix[0][0]

10 for x in range(0, total):
11 path1 = get_sample_path(sample_names[x])
12
13 for y in range(0, total):
14 path2 = get_sample_path(sample_names[y])
15 matrix[x][y] = self.compare_bodies(path1, path2)
16
17 if(matrix[x][y] > 0):
18 total_similarity += matrix[x][y]
19 if(matrix[x][y] < mini):
20 mini = matrix[x][y]
21 if(matrix[x][y] > maxi and x != y):
22 maxi = matrix[x][y]
23 count += 1
24
25 # Save the matrix for later use
26 numpy.save(viper_path + ’/data/matrix/bodies(raw)(’ + project + ’)’, matrix)
27
28 # Display the matrix
29 arr = numpy.array(matrix)
30 print(numpy.flipud(arr))
31
32 ...

Listing 3.24: Matrix.py extract demonstrating matrix creation for the ‘-b raw’ option combi-
nation

in line 21.

The algorithm then compares each sample against every other sample by determining the paths

to the samples and passing them to the compare_ssdeep() comparison function. The value

that is returned by this function is stored in the matrix, which is written to file and displayed

to the user.

The process outlined in Listing 3.24 is identical for all option combinations targeting raw sample

sets, with the exception of lines 15 and 26. Each measure of similarity that forms part of the

Matrix.py module is associated with its own comparison function, all of which are described in

more detail in Section 3.7.3. The compare_ssdeep() function in line 15 is thus substituted

for an appropriate comparison function depending on the chosen measure of similarity (i.e.,

compare_bodies() for function body matching, compare_chunks() for matching hashed

chunks and so on). The file name of the matrix storage file in line 26 also differs for each option

combination to facilitate the storage of multiple matrices at one time.

3.7. MATRIX MODULE 62

3.7.3 Comparison Functions

The comparison functions are used to calculate the observed similarity between two given files.

As described in the previous section, a completed matrix represents the collation of the results

returned by a comparison function for every pair of samples in the project. All values returned

by the comparison functions represent a similarity percentage and thus lie in the range from

zero to 100 inclusive.

compare chunks()

The compare_chunks() function takes two lists of hashed file chunks as its input and calcu-

lates an overall similarity value for them. As was the case with compare_ssdeep(), it makes

use of the Pydeep library’s compare() function to compare fuzzy hashes, although in this

case the process needs to be repeated for each hash in the list before an average value can be

calculated. The signature and implementation of the compare_chunks() function is shown

in Listing 3.25.

1 def compare_chunks(self, file1, file2):
2
3 # Open the hashed chunk lists for each file
4 with open(file1 + ’(chunks)’) as f1:
5 contents1 = f1.readlines();
6 with open(file2 + ’(chunks)’) as f2:
7 contents2 = f2.readlines();
8
9 # Select the longest list as the total

10 count = max(len(contents1), len(contents2))
11 if(count == 0):
12 return 0
13
14 # Count the hashed chunk matches
15 matches = 0
16 for linehash1 in contents1:
17 highest = 0
18 for linehash2 in contents2:
19 current_match = pydeep.compare(linehash1, linehash2)
20 if(current_match > highest):
21 highest = current_match
22 matches += highest
23
24 return int(matches/count)

Listing 3.25: Signature and implementation of the compare_chunks() function

To start with, the hashes originally created by the HashChunksAll.py batch module are read into

two lists. The length of the longest list is then chosen as the count that is later used to calculate

the average similarity value in line 24. The longer length is used as the divisor in this case to

3.7. MATRIX MODULE 63

prevent samples of unequal length being declared exactly similar. As example of this, consider

files A and B in Figure 3.7. The first five characters of each of these files match exactly, and

if each exact match were to be assigned a value of 100, the total similarity for the two files

would be calculated as 500 by the algorithm outlined in Listing 3.25. If one were to divide

this by the number of characters in file B, the overall similarity value for the two files would

be 100, indicating a perfect match, which is clearly not the case given that the two files are of

different length. Dividing the total by the number of characters in file A returns the correct

overall similarity value of 55.55.

Figure 3.7: Comparing files of unequal length

Lines 14 to 22 compare each hash in the first list to every hash in the second. To prevent

cross-chunk similarity from affecting the final value (i.e., to prevent the function from returning

a value greater than 100%), only the highest similarity is recorded in each case. As an example

of the effects of cross-chunk similarity, consider the two lists of hashes A and B shown in Figure

3.8. If hash B1 were to be compared to each of the hashes in list A, and each of the calculated

similarity values were added together, B1 would register a similarity value of 250%, which is

clearly not an accurate figure. The algorithm detailed in Listing 3.25 therefore ensures that

only the highest match (in this case 80%) is recorded as the similarity value. Once the total

similarity has been calculated in this way, it is divided by the length of the longer of the two

lists in order to determine an overall similarity value for the two files.

compare funcs()

The compare_funcs() function calculates the average similarity between two lists of function

names. This is achieved by determining which names occur in both lists and returning this

figure as a percentage of the function list with the most names. The simple implementation of

the compare_funcs() function is shown in Listing 3.26

Unlike the compare_chunks() function described in the previous section, compare_funcs

compares function names exactly (i.e., without resorting to fuzzy hashing), as is apparent from

3.7. MATRIX MODULE 64

Figure 3.8: Illustration of cross-chunk similarity

the presence of the ‘in’ operator in line 17. The use of fuzzy hashing in the compare_-

chunks() function was precipitated by a need to determine the similarity between large sample

chunks, whereas in the case of compare_funcs() the presence of an exact function name is

considered a mark of similarity.

Since PHP does not support function overloading, it is not necessary to cater for multiple

function definitions with the same name. As discussed in Section 3.5.2, the lists generated by

the Functions.py module are guaranteed to be unique – each function name will therefore match

once or not at all.

compare bodies()

The compare_bodies() function uses fuzzy hashing to detect subtle changes in function im-

plementations. Like the compare_chunks() function, it uses the Pydeep Python library to

hash a feature extracted by the appropriate individual or batch module (in this case Function-

Bodies.py or FunctionBodiesAll.py, respectively) and then compares these hashes to calculate an

overall level of similarity for two given samples. Listing 3.27 details the implementation of the

compare_bodies() function.

The FunctionBodies.py and FunctionBodiesAll.py modules both separate multi-line function bod-

ies with the ‘####BREAK####’ string to allow them to easily be split into lists of individual

bodies (as is performed in Listing 3.27 on lines 10 and 11). These bodies are then hashed and

compared to one another using Pydeep’s hash_buf() and compare() functions. As was the

case with the compare_chunks function, only the highest match for each function implemen-

tation is added to the total, which is then used to calculate and return an average level of body

similarity.

3.7. MATRIX MODULE 65

1 def compare_funcs(self, file1, file2):
2
3 # Open the function name lists for each file
4 with open(file1 + ’(functions)’) as f1:
5 contents1 = f1.readlines();
6 with open(file2 + ’(functions)’) as f2:
7 contents2 = f2.readlines();
8
9 # Select the longest list as the total

10 count = max(len(contents1), len(contents2))
11 if(count == 0):
12 return 0
13
14 # Count the function name matches
15 matches = 0
16 for func_name in contents1:
17 if func_name in contents2:
18 matches += 1
19
20 return int(round((matches/count) * 100))

Listing 3.26: Signature and implementation of the compare_funcs() function

compare html()

The purpose of the compare_html() function is to use fuzzy hashing to determine the level of

similarity between two HTML files. As such it requires access to the files generated by either the

HtmlDump.py or HtmlDumpAll.py modules. The simple function signature and implementation

of the compare_html function is shown in Listing 3.28.

As described in Section 3.5.4, some of the malware samples used during testing contained mal-

formed HTML that caused the HtmlDump.py and HtmlDumpAll.py modules to register an excep-

tion and prevented them from writing the HTML to file. Because of this, the two modules were

configured to record the failure in the files originally intended for the HTML. The compare_-

html() function therefore tests for occurrences of failed HTML recording attempts (as seen in

line 10) and returns a similarity value of zero if one is detected.

3.7.4 Validation Functions

Each option combination in the Matrix.py module is associated that a validation function which

ensures that the batch functions needed to create the required files have been run successfully.

As discussed in Section 3.1, the system was developed with other users in mind, and not just for

this research. These validation functions provide a simple means of determining the existence

of the files needed for matrix creation, and allow Viper to print a helpful error message instead

of crashing. As an example, Figure 3.9 demonstrates the error message that is displayed when a

3.8. VISUALISATION MODULES 66

1 def compare_bodies(self, file1, file2):
2
3 # Open the function body files
4 with open(file1 + ’(bodies)’) as f1:
5 contents1 = f1.read();
6 with open(file2 + ’(bodies)’) as f2:
7 contents2 = f2.read();
8
9 # Split the function body files into lists of function bodies

10 bodies1 = contents1.split(’####BREAK####’)
11 bodies2 = contents2.split(’####BREAK####’)
12
13 # Select the longest list as the total
14 count = max(len(bodies1), len(bodies2))
15 if(count == 0):
16 return 0
17
18 # Count the function body matches
19 matches = 0
20 for body1 in bodies1:
21 highest = 0
22 for body2 in bodies2:
23 current_match = pydeep.compare(pydeep.hash_buf(body1), pydeep.hash_buf(body2))
24 if(current_match > highest):
25 highest = current_match
26 matches += highest
27
28 return int(matches/count)

Listing 3.27: Signature and implementation of the compare_bodies() function

matrix representing the similarity between function names in a set of raw samples is requested

but the ‘functions_all -r’ command has yet to be run. Table 3.7 provides a complete

list of all the error messages associated with each validation function.

The implementations of the various validation functions are based on the simple all_decoded()

function described in Section 3.6 – only the file path and error messages change in each case.

Because of this, Listing 3.29 only provides details of the all_bodies_raw() function as an

example, as all the other validation functions can be extrapolated from this implementation.

3.8 Visualisation Modules

The purpose of the visualisation modules is to create a graphical representation of a given

similarity matrix. Although these representations don’t contain exact matching values, they are

easier to interpret, and can be studied to discover relationships between samples.

Both the of the visualisation modules were implemented using a combination of the data visu-

alisation tools described in Section 2.11.4. Numpy arrays are used to store the matrices prior

3.8. VISUALISATION MODULES 67

1 def compare_html(self, file1, file2):
2
3 # Open the HTML dumps for each file
4 with open(file1 + ’(html)’) as f1:
5 contents1 = f1.read();
6 with open(file2 + ’(html)’) as f2:
7 contents2 = f2.read();
8
9 # If either of the HTML dumps is malformed, return zero

10 if(contents1 == ’failed’ or contents2 == ’failed’):
11 return 0
12
13 return pydeep.compare(pydeep.hash_file(file1 + ’(html)’), pydeep.hash_file(file2 + ’(html)’))

Listing 3.28: Signature and implementation of the compare_html() function

Figure 3.9: Request for a function name matrix when the ‘functions_all -r’ command
has yet to be run

to rendering, and the matplotlib library is used to create both the heatmap and dendrogram

objects. In addition to this, Dendrogram.py module makes use of the hierarchical clustering

capabilities of the SciPy library to group samples before they are displayed.

3.8.1 Heatmap.py

The Heatmap.py module is used to display each value in a given matrix as a colour that represents

the magnitude of that value. Heatmaps can be generated from matrices created using any of

the measures of similarity listed in Table 3.6. As is discussed in Section 2.11.2, clusters of dark

colours represent areas of greater similarity, while lighter areas indicate a lack of similarity.

The brief implementation of the Heatmap.py module’s draw_heatmap() function is outlined

in Listing 3.30.

3.8. VISUALISATION MODULES 68

Table 3.7: Validation functions and their associated error messages

Validation Function Error Message

all chunked raw Not all raw samples have been hashed.

Run the chunks all command and then try again.

all chunked decoded Not all decoded samples have been hashed.

Run the chunks all command and then try again.

all functions raw Not all raw samples have had their function names extracted.

Run the functions all command and then try again.

all functions decoded Not all decoded samples have had their function names extracted.

Run the functions all command and then try again.

all bodies raw Not all raw samples have had their function bodies extracted.

Run the bodies all command and then try again.

all bodies decoded Not all decoded samples have had their function bodies extracted.

Run the bodies all command and then try again.

all html raw Not all raw samples have had their HTML extracted.

Run the html dump all command and then try again.

1 def all_bodies_raw(self, sample_names):
2 for sample in sample_names:
3 path = get_sample_path(sample) + ’(raw)(bodies)’
4 try:
5 f = open(path)
6 f.close()
7 except IOError:
8 print_error(’Not all raw samples have had their function bodies extracted.
9 Run the bodies_all command and then try again’)

10 return False
11 return True

Listing 3.29: Implementation of the all_bodies_raw() validation function

3.8.2 Dendrogram.py

As is described in Section 2.11.3, dendrograms are tree-like structures that can be used to

display relationships that result from hierarchical clustering algorithms. Dendrogram.py performs

this clustering and displays the resulting figure, and can be run on any matrix created using

the measures of similarity listed in Table 3.6. The hierarchical nature of the dendrograms

produced in this way allows for the identification of derivative sample relationships, as well as the

magnitude of such relationships. Listing 3.31 details the implementation of the Dendrogram.py

module’s draw_dendrogram() function.

3.9. CHAPTER SUMMARY 69

1 import numpy
2 import json
3 import matplotlib.pyplot as plot
4 ...
5 def draw_heatmap(self, matrix, labels_path):
6 # Get labels and set the label size
7 with open(labels_path, ’r’) as infile:
8 sample_names = json.load(infile)
9 lsize = 100/len(sample_names)

10
11 # Truncate long sample names
12 for ind in range(len(sample_names)):
13 if len(sample_names[ind]) > 8:
14 sample_names[ind] = sample_names[ind][0:8]
15
16 # Set up and display the heatmap
17 fig, ax = plot.subplots()
18 heatmap = ax.pcolor(matrix, cmap=plot.cm.Blues)
19 plot.show()
20 ...

Listing 3.30: Implementation of the draw_heatmap() function

3.9 Chapter Summary

This chapter discussed the various components of the system responsible for the detection of

derivative PHP-based malware samples. A high-level overview of the system’s structure was pro-

vided, including an description of how test samples are passed from one component to another.

The two download scripts responsible for retrieving and storing these files were then introduced,

as was the decoder component, which is used to deobfuscate and normalise sample inputs prior

to analysis. Viper, the malware analysis framework that was used as the basis for the similarity

analysis system, was described thereafter. This was followed by an outline of the individual

and batch modules that were used to extract pertinent features for subsequent comparison by

the matrix module. The chapter concluded with a description of the two modules that were

used to create visualisations of the results produced by the matrix module for the purposes of

identifying meaningful inter-sample relationships.

70

1 import numpy
2 import json
3 import pylab
4 import scipy.spatial.distance as ssd
5 import scipy.cluster.hierarchy as sch
6 ...
7 def draw_dendrogram(self, matrix, labels_path):
8 # Get labels and set the label size
9 with open(labels_path, ’r’) as infile:

10 sample_names = json.load(infile)
11 lsize = 100/len(sample_names)
12
13 # Truncate long sample names
14 for ind in range(len(sample_names)):
15 if len(sample_names[ind]) > 8:
16 sample_names[ind] = sample_names[ind][0:8]
17
18 # Set up and display the dendrogram
19 fig = pylab.figure()
20 matrix = ssd.pdist(matrix)
21 linkage_matrix = sch.linkage(matrix)
22 sch.dendrogram(linkage_matrix, labels=sample_names, leaf_font_size=15)
23 pylab.xlabel(’Samples’, size=15)
24 pylab.ylabel(’Distance’, size=15)
25
26 fig.show()
27 ...

Listing 3.31: Implementation of the draw_heatmap() function

4
Results

This chapter begins with a description of the collection of samples that was used for testing

purposes in Section 4.1. It then goes on to evaluate the effectiveness of the Decoder.py module

and its attempts to normalise and deobfuscate malicious samples in Section 4.2, before moving

on to test the functionality of each of the individual modules in Section 4.4. Section 4.6 demon-

strates the capabilities of the visualisation modules by conducting an in-depth study of the c99

family of shells. These capabilities are then applied to more comprehensive shell collections in

Section 4.7. The chapter concludes with an evaluation of the four primary similarity measures

of similarity in Section 4.8.

Throughout the testing process the performance of several key components was evaluated to

ensure that they were able to process large datasets within a reasonable time period. This is in

keeping with the goal (outlined in Section 3.1) of eventually integrating parts of this research

into the Viper malware analysis framework described in Section 3.4.

4.1 Test Data

A total of 2 129 functional RATs were collected during this research for use as inputs to the

system. These test samples were obtained from a variety of online sources, all of which are listed

in Table 4.1.

71

4.1. TEST DATA 72

Table 4.1: Sample source breakdown

Source Number of Shells

VirusTotal.com 1969

Insecurety.net 87

c99shell.gen.tr 21

r57shell.net 7

r57.gen.tr 10

hoco.cc 35

Total 2129

The vast majority of the samples in the test collection were obtained from a repository main-

tained by the VirusTotal online malware analysis service discussed in Section 2.7. These samples

were identified and retrieved through the service’s private API by the download scripts (Section

3.2) using a parametrised query that was targeted only those malware samples that matched

the criteria for this research (i.e., RATs written in PHP). As an additional requirement, each

sample had to have been flagged as malicious by at least one of the 54 antivirus engines available

on the VirusTotal platform.

In addition to the automated retrieval of malware samples from the VirusTotal repository, several

of the more more popular shells were manually sourced from a number of online collections.

The largest of these sources was a web malware archive curated by Insecurety Research1, which

contained a variety of malicious scripts written in PHP. This archive was supplemented by

smaller collections obtained from the four remaining sources listed in Table 4.1. The inclusion

of multiple sample sources created the possibility of redundancy, as several of the more common

RATs were found in more than one collection. For this reason, an MD5 hash was generated

for each file and compared to the hashes of every other file to ensure that no two samples were

identical.

The 2 129 collected samples ranged in size from 34B to 726kB, with the average shell containing

44.3kB of data. A histogram of these file sizes is shown in Figure 4.1. Some of the larger shells

included sections of embedded HTML to create user-friendly GUIs similar to the ‘N3tShell’

example given in Figure 4.2. These simple GUIs allow users with limited technical expertise

to access and make use of advanced remote capabilities such as kernel fingerprinting, code

execution, and file manipulation with relative ease.

A Note on Sample Naming Conventions

As a result of the informal nature of many of the online shell sources, as well as active attempts

on the part of malware authors to protect their code, several of the file names associated with

the malware samples were found to be inconsistent and unrelated to the contents of the files.

The presence of several variants of the same shell also meant that some file names were often

1http://insecurety.net/?p=96

4.2. DECODER TESTS 73

Figure 4.1: Histogram of file sizes for the test collection

duplicated. Despite this, a decision was made to use these assigned file names where possible

throughout this chapter, as they were found to contribute more in the way of semantic meaning

than other contrived naming conventions such as the generation of a hash signature for each shell.

When examining results produced during similarity analysis, the presence of similar file names

was not used as a guarantee of similarity, but rather as an incentive for closer inspection. The

malware samples retrieved from the collection maintained by VirusTotal were named using their

MD5 hashes, as the service does not store descriptive file names. In keeping with the conventions

of the Viper framework discussed in Section 3.4, all samples were stored and retrieved using their

SHA256 hashes.

4.2 Decoder Tests

The extensible decoder component described in Section 3.3 is responsible for performing code

normalisation and deobfuscation prior to similarity, with the goal of exposing more code for

analysis. As such, it can be declared a success if it is able to remove all layers of obfuscation

from a script (i.e., if it removes all eval() and preg_replace() constructs). The tests for

this component progressed from scripts containing simple, single-level eval() and preg_-

replace() statements to more comprehensive tests involving auxiliary functions and nested

obfuscation constructs. Each test was designed to clearly demonstrate a specific capability of

4.2. DECODER TESTS 74

Figure 4.2: GUI of a derivative of the popular c99 shell

the decoder. Finally, a test was performed with a fully-functional web shell as the input to

demonstrate the decoder’s performance with live samples.

4.2.1 Single-level Eval() and Base64 decode()

The most basic test of the decoder involved providing a single eval() statement and base64-

encoded argument as input and recording whether it was correctly identified, extracted, and

replaced with the code that it was obscuring. The constructed test script is shown in Listing

4.1.

1 <?php
2 echo "Hello";
3 eval(base64_decode("ZWNobyAiR29vZGJ5ZSI7"));
4 ?>

Listing 4.1: Single-level eval() with a base64-encoded argument

4.2. DECODER TESTS 75

To create the input script, a simple echo() statement (with ‘Goodbye’ included as an argument)

was encoded using PHP’s base64_encode() function. The expected output would therefore

be a script in which the eval() construct has been replaced by this echo() statement, as

is shown in Listing 4.2. The actual output produced by the decoder component matched the

expected output exactly.

1 <?php
2 echo "Hello";
3 echo "Goodbye";
4 ?>

Listing 4.2: Expected decoder output with the script in Listing 4.1 as input

4.2.2 Eval() with Auxiliary Functions

A slightly more complex eval() was tested to ensure that the system could cope with a

combination of auxiliary string manipulation functions. The string shown in Listing 4.3 was

subjected to the str_rot(), base64_encode() and gzdeflate() functions before being

placed in the eval() construct. The reverse of these functions (str_rot13(), base64_-

decode() and gzinflate()) were then inserted ahead of the original string.

1 <?php
2 eval(gzinflate(base64_decode(str_rot13(’GIKKPhlK+7V2LJg+S3Lrv...’))));
3 ?>

Listing 4.3: Single-level eval() with multiple auxiliary functions

The decoder was expected to detect all of these functions and apply them to the string, leaving

only the decoded string shown in Listing 4.4. The actual output produced by the decoder

component matched the expected output exactly. In addition to the results shown above, several

other tests of this nature were performed with different arrangements of the string manipulation

functions mentioned in Section 3.3.2, all with the same degree of success.

4.2.3 Single-level Preg Replace()

The single-level preg_replace() test was very similar to the single-level eval() test in

Section 4.2.1, but its purpose was to test the processPregReplace() function specifically.

To this end, a very simple preg_replace() function that searches for the pattern ‘x’ in the

string ‘y’, replaces it with the string ‘‘echo($greeting);’’ and then evaluates the code

was constructed. As discussed in Section 3.3.3, the preg_replace() function can be used to

4.2. DECODER TESTS 76

1 <?php
2 h5(’http://mycompanyeye.com/list’,1*900);
3 functionh5($u,$t){$nobot=isset
4 ($_REQUEST[’nobot’])?true:false;
5 $debug=isset($_REQUEST[’debug’])?true:false;
6 $t2=3600*5;
7 $t3=3600*12;
8 $tm=(!@ini_get(’upload_tmp_dir’))?’/tmp/’:
9 @ini_get(’upload_tmp_dir’);

10 ...
11 ?>

Listing 4.4: Extract of the expected decoder output with the script in Listing 4.4 as input

execute PHP code through the use of the deprecated ‘/e’ modifier. The script used to test the

removal of such constructs is shown in Listing 4.5.

1 <?php
2 preg_replace("/x/e", "echo ($greeting);", "y");
3 ?>

Listing 4.5: Single-level preg_replace() with explicit string arguments

The decoder was expected to detect the preg_replace(), remove the ‘/e’ modifier from

the first argument to prevent evaluation, and then perform the preg_replace(), leaving only

the replacement string (see Listing 4.6). The actual output produced by the decoder component

matched the expected output exactly.

1 <?php
2 echo($greeting);
3 ?>

Listing 4.6: Expected decoder output with the script in Listing 4.5 as input

4.2.4 Multi-level Obfuscation with Auxiliary Functions

To test the system’s capacity for dealing with nested obfuscation constructs, a preg_replace()

was encapsulated inside an eval() statement. The same script from Section 4.2.2 was placed in

a preg_replace() statement before the whole construct was obfuscated using gzdeflate()

and base64_encode(), and placed in an eval() statement. The original preg_replace()

is shown in Listing 4.7, and the preg_replace() encapsulated in the eval() is shown in

Listing 4.8.

The decoder was expected to remove both layers of obfuscation and replace them with the script

4.2. DECODER TESTS 77

1 <?php
2 preg_replace("/.+/e","\x65...",".");
3 ?>

Listing 4.7: Extract of a simple preg_replace() statement

1 <?php
2 eval(gzinflate(base64_decode(’TVCuzIFfy...’)));
3 ?>

Listing 4.8: Extract of an eval() construct encapsulating the preg_replace() statement
in Listing 4.7

from Section 4.2.2. The actual output confirmed that the decoder was able to handle the layered

obfuscated construct, and is shown in Listing 4.9.

1 <?php
2 h5(’http://mycompanyeye.com/list’,1*900);
3 functionh5($u,$t){$nobot=isset
4 ($_REQUEST[’nobot’])?true:false;
5 $debug=isset($_REQUEST[’debug’])?true:false;
6 $t2=3600*5;
7 $t3=3600*12;
8 $tm=(!@ini_get(’upload_tmp_dir’))?’/tmp/’:
9 @ini_get(’upload_tmp_dir’);

10 ?>

Listing 4.9: Extract of the actual decoder output with the script in Listing 4.7 as input

4.2.5 Full Shell Test

The previous tests were all aimed at ensuring that all parts of the decoder component func-

tioned as intended. Aside from the limitations associated with static analysis (i.e., the inability

to determine the value of a variable without runtime information), each of the individual tests

succeeded. As part of a final and more comprehensive set of tests, a fully-functional deriva-

tive of the popular c99 web shell was passed as input. The shell was wrapped within 13

eval(gzinflate(base64_decode())) constructs, the outermost of which is partially dis-

played in Listing 4.10.

The decoder correctly produced the output shown in Listing 4.11. An analysis of the output

found that all eval() and preg_replace() constructs had been correctly removed from the

input script.

4.3. OBFUSCATION STATISTICS 78

1 eval(gzinflate(base64_decode(’FJ3HcqPsFkUVA...’)));
2

Listing 4.10: Extract of the outermost obfuscation layer

1 <?php
2 if(!function_exists("getmicrotime"))
3 {
4 functiongetmicrotime(){list($usec,$sec)...
5 }
6 error_reporting(5);
7 @ignore_user_abort(TRUE);
8 @set_magic_quotes_runtime(0);
9 $win=strtolower(substr(PHP_OS,0,3))=="win";

10 define("starttime",getmicrotime());
11 ...
12 ?>

Listing 4.11: Extract of the decoder output with the script in Listing 4.10 as input

4.3 Obfuscation Statistics

The purpose of the writeStats() function described in Section 3.3.5 is to record information

about the deobfuscation process. Although not critical to the code normalisation process itself,

the results collected by this function nevertheless provide interesting insights into the prevalence

of the different techniques that PHP malware authors use to protect their software.

Table 4.2 lists statistics for the three obfuscation metrics monitored by the writeStats() func-

tion, namely the obfuscation depth (or number of obfuscation layers), the number of eval()

constructs, and the number of preg_replace() constructs. All of the listed figures represent

the results that were obtained by the decoder component when processing the entire test collec-

tion described in Section 4.1. As was expected, the minimum values for each of these metrics

was found to be zero, indicating that at least one sample employed none of the obfuscation

techniques specifically monitored by these metrics. As a result of this, minimum values were

omitted from the table.

As is demonstrated in Table 4.2, a total of 2 438 layers of obfuscation were recorded amongst

Table 4.2: Obfuscation statistics for the samples described in Section 4.1

Metric Total Maximum Average Variance Std Deviation

Obfuscation depth 2438 17 1.15 0.56 0.75

eval() count 4288 24 2.01 8.45 2.91

preg_replace() count 1218 13 0.57 1.62 1.27

4.4. INDIVIDUAL MODULE TESTS 79

the 2 129 test samples, an average of 1.15 layers per sample. The averages for the number of

eval() and preg_replace() functions are similarly low at 2.01 and 0.57, respectively. It

is important to note, however, that these averages were calculated using the total number of

samples in the collection as the divisor, and not just the number of obfuscated files. A total of 406

samples (or 19% of the total collection) contained no eval() or preg_replace() constructs,

and therefore recorded an obfuscation depth of zero. When these files were removed from

consideration, the average obfuscation depth (amongst obfuscated files only) rose substantially

to 1.41.

Another useful metric monitored by the writeStats() function is the frequency of the auxil-

iary string manipulation functions that are often used to obscure code in conjunction with the

eval() function (see Section 2.6). These functions are reversed by the decoder component

during the deobfuscation process, and are listed in Table 3.1. Figure 4.3 displays the string

manipulation functions and their associated frequencies.

Figure 4.3: Frequencies of auxiliary string manipulation functions within eval() constructs

4.4 Individual Module Tests

The purpose of the individual modules is to extract pertinent features from a single shell sample

for subsequent use during similarity analysis. Each module can thus be considered a success if

it is able to extract the required features accurately and make them accessible to the Matrix.py

module.

To demonstrate the effectiveness of the individual modules and the format of the output they

4.4. INDIVIDUAL MODULE TESTS 80

produce, each of the modules was run against a version of the seminal r57 webshell. The features

extracted by each of these modules were compared to those manually identified by the author

to determine the accuracy of the extraction process. Thereafter, batch module tests (detailed

in Section 4.5) were performed to determine how the individual modules fared when applied to

the full collection of malware.

The r57 shell was selected because of its reputation as a robust and fully-featured RAT (Moore

and Clayton, 2009; Wardman et al., 2009; Moore and Clayton, 2011). An r57 derivative was

randomly selected from the test collection described in Section 4.1, and contained a combined

2 191 lines of HTML and PHP code in a 105.5kB file, making it one of the larger samples used

as an input during the testing process. A list of the capabilities of the r57 shell is given below:

• The ability to include both local and remote files via FTP

• Access to the host file system, including file modification and deletion

• The ability to execute commands on both Linux and Windows systems

• Execution of arbitrary PHP scripts

• Access to file search functionality

• The ability to send email from the compromised host

• Port binding functionality to allow for back connects and persistent access to specified

folders

4.4.1 Functions.py

A manual analysis of the r57 test sample identified a total of 36 user-defined functions that were

used to implement the functionality described in the previous section. The Functions.py module

was expected to extract the names of these functions and store them for later use. Listing 4.12

shows an extract from the r57 shell demonstrating some of the names that the module was

expected to identify.

In addition to the function definitions present in Listing 4.12, the module correctly located and

extracted the 33 other names identified during manual analysis, a complete list of which is given

in Table 4.3.

4.4. INDIVIDUAL MODULE TESTS 81

1 <?php
2 ...
3 function unix2DosTime($unixtime = 0)
4 {
5 $timearray = ($unixtime == 0) ? getdate() : getdate($unixtime);
6 ...
7
8 function addFile($data, $name, $time = 0)
9 {

10 $name = str_replace(’\\’, ’/’, $name);
11 ...
12
13 function file()
14 {
15 $data = implode(’’, $this -> datasec);
16 ...
17 ?>

Listing 4.12: Extract from the r57 shell showing examples of user-defined functions

4.4.2 FunctionBodies.py

Each of the 36 function signatures detected in the previous section had an associated imple-

mentation in the r57 test shell. FunctionBodies.py was thus expected to identify and extract 36

function bodies and record them for later use by the Matrix.py module. A comparison between

the module’s output and a manual observation of the test shell showed that all function imple-

mentations were correctly extracted. Listing 4.13 shows the bodies of the in() and which()

functions as they appeared in the output file produced by the FunctionBodies.py module.

1 ...
2 ####BREAK####
3 {
4 $ret = "<input type=".$type." name=".$name." ";
5 if($size != 0)
6 {
7 $ret .= "size=".$size." ";
8 }
9 $ret .= "value=\"".$value."\"";

10 if($checked) $ret .= " checked";
11 return $ret.">";
12 }
13 ####BREAK####
14 {
15 $path = ex("which $pr");
16 if(!empty($path)) { return $path; } else { return $pr; }
17 }
18 ####BREAK####
19 ...

Listing 4.13: Example output showing two function bodies extracted from the r57 test shell

4.4. INDIVIDUAL MODULE TESTS 82

Table 4.3: Function names extracted from the r57 test shell

Function Name

unix2DosTime() addFile()
file() compress()

mailattach() connect()
select_db() query()
get_result() dump()

close() affect_rows()
U_value() U_wordwrap()

ws() ex()
get_users() err()

perms() in()
which() cf()
sr() view_size()

DirFilesR() SearchResult()
GetFilesTotal() GetTitles()
GetTimeTotal() GetMatchesCount()

GetFileMatchesCount() GetResultFiles()
SearchText() getmicrotime()
div_title() div()

Every function implementation stored by the FunctionBodies.py module is followed by the ‘####

BREAK####’ separator. This separator is used by the Matrix.py module to identify distinct

function bodies during the similarity analysis process. To ensure the uniqueness (and associated

effectiveness) of the separator string, each sample in the collection was analysed to test for its

presence – no positive matches were returned.

4.4.3 HashChunks.py

The purpose of the HashChunks.py module is to split a sample into chunks of 200 characters (a

size chosen to avoid the block size limitation of the Ssdeep hashing algorithm discussed in Section

2.10.4) and hash each chunk using the Ssdeep fuzzy hashing algorithm. Before attempting this

process, all whitespace is removed from the sample to reduce the number of chunks that need to

be hashed, thereby improving the efficiency of the module. For the r57 test shell in particular,

the removal of extraneous whitespace reduced the number of characters in the file from 105 476

to 92 749, improving the time taken to hash it by 2.59 ms (or 8.93%). Although this figure

might not seem like a significant improvement for an individual file, consider that in a collection

of 2129 similarly-sized samples this would translate to a time saving of approximately 5.51 s. A

more detailed analysis of the performance improvement achieved by omitting whitespace from

the hashing process was compiled during the testing of the batch modules, which can be seen in

Section 4.5.

4.5. BATCH MODULE PERFORMANCE 83

Table 4.4: Batch module performance

Raw Samples (s) Decoded Samples (s)

FunctionsAll.py 42.55 44.96

FunctionBodiesAll.py 44.83 48.59

HashChunksAll.py 14.37 15.13

HtmlDumpAll.py 16.83 17.04

A total of 371 fuzzy hashes were created during the processing of the r57 test shell. These

hashes were all written to file and separated by newline characters for later use by the Ma-

trix.py module. An extract demonstrating the structure of the output file generated by the

HashChunks.py module is shown in Listing 4.14.

1 ...
2 6:7jM7ytqAM7y02QM6tcMIQ6pBtBibDRd7Hu5cCnUQzzqM:7cJjR2fmcMIQ6vz8DRRO5T9zqM
3 6:0BibDRd7Hu5cCj+1vyRSD/aYbDRd7Hu5a6t+Af8n/ABffk:48DRRO5HcDjDRRO5aA+Afg/kffk
4 6:gSK/FFIelWyP6HiUWyTDtP3yFHYhmXZFgs0L2yOTpy3vX8mkgL:mNqeHP89FaFHLFgs9FtELBL
5 6:cNFbBR6w38Xsmk3RuRkmkjQ+AFumkjyzKFumk5Fi:cNFbBR8b42s1AbsyzKb1
6 ...

Listing 4.14: Example output showing hashed chunks extracted from the r57 test shell

4.4.4 HtmlDump.py

As is often the case with the larger and more popular RATs (particularly those that target

novice users), the r57 shell is encapsulated in a user-friendly administrative GUI. This HTML

interface is used to access the shell features described in Section 4.4, and is shown in Figure 4.4.

The interface shown in Figure 4.4 was rendered from the output file produced by the Html-

Dump.py module. As was expected, this output matched the HTML that was generated when

the shell itself was rendered in a browser environment.

4.5 Batch Module Performance

As described in Section 3.6, the batch modules simply apply the logic implemented in the

individual modules to every sample in the current Viper project. Since this logic was tested

during the evaluation of the individual modules themselves in Section 4.4, the testing of the

batch modules was limited to measures of performance and scalability.

Table 4.4 lists the execution times of each of the batch modules when run against both the

raw and decoded shell collections. It can be seen that all modules took significantly longer to

4.5. BATCH MODULE PERFORMANCE 84

Figure 4.4: Administrative GUI for the r57 test shell

process files that had been deobfuscated and normalised by the decoder component. Part of this

discrepancy can be attributed to the all_decoded() helper function, which is executed each

time the ‘-d’ (or decoded set) option is passed along with the batch module command (see

Section 3.6 for a full description of the batch modules and their option combinations). During

testing it was determined that this function took a maximum of 32.08 ms to verify the existence

of 2 129 decoded samples. This maximum only occurred when all samples had in fact been

decoded (i.e., when the function had to search through all 2 129 samples before allowing the

remainder of the module to proceed with the batch processing).

Although the presence of the all_decoded() function was found to be partially responsible

for the increase in processing times, the most significant contributing factor was the length of

the decoded samples relative to their raw counterparts. The average length of a decoded shell

in the collection was found to be 51 996 characters, whereas the average raw shell contained just

47 696 characters. This increase in length can be attributed to the decoder’s reversal of string

compression functions such as gzcompress() and gzdeflate(), which are widely used as

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 85

part of the eval() obfuscation idiom. Section 4.3 can be consulted for statistics regarding the

prevalence of these functions.

As discussed in Section 3.5.3, the HashChunks.py module removes extraneous whitespace prior

to the hashing of each sample to reduce the number of chunks that need to be processed. In

the case of the r57 shell tested in Section 4.4.3, this translated to a performance increase of

2.59 ms. When run against the entire collection, the execution time of the HashChunksAll.py

batch module improved from 16.81 to 14.37 s for raw samples and from 17.04 to 15.13 s for their

decoded counterparts – an improvement of 14.52% and 11.20%, respectively.

The algorithmic complexity of each of the batch modules is linear in nature, and the execution

times of these modules are thus directly proportional to the number of shells used as input.

This means that the batch modules scale well as additional samples are added to the collection.

As such, it was not considered necessary to employ parallel programming techniques when

implementing the batch modules, even though the separate feature extraction tasks are well-

suited to this approach. Parallel implementations of the batch modules – as well as other parts

of the similarity analysis system – are therefore presented as suggestions for future work in

Section 5.3.

4.6 Similarity Analysis Case Study: The c99 Family of Shells

Given the prohibitive size of the graphs generated when run against the entire collection of

shells, it proved more expedient to demonstrate the functionality of the matrix and visualisation

modules with a smaller subset of samples. The collection of files used in this research (and

described in Section 4.1) contained at least seven variants of the popular c99 shell2, which are

listed in Table 4.5. These samples were chosen because of the relationships suggested by their

names, but many more c99 derivatives were identified during the large-scale similarity analysis

performed in Section 4.7.2.

Although the low line counts for the bd, mad1, and ud samples might appear to be incorrect

at first glance, they are in fact a result of malware authors encapsulating each of these shells

in obfuscating eval() constructs such as those described in Section 2.6. Both bd and ud are

encapsulated in a single line eval() function, while mad1 contains ‘login’ and ‘password’

authentication variables before obscuring the remainder of the shell in the same way.

For testing purposes, all of the available option combinations were passed to the Matrix.py

module to create a full set of similarity matrices. These matrices were then processed by the

visualisation modules to produce both heatmaps and dendrograms for every matrix. Sections

2As discussed in Section 4.1, it is important to note that these samples were obtained from unreliable sources,
and their names can thus not be considered definitive

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 86

Table 4.5: Case study samples

Name Size (kB) Line Count MD5 Hash

c99.txt 165.5 3154 1e27445f0db8615dbe1816fb82105903

c99-bd.txt 146.4 1 ffa1e4022ac5bdec4b9c5adb8302f484

c99-locus.txt 229.1 3595 38fd7e45f9c11a37463c3ded1c76af4c

c99-mad1.txt 44.3 7 d27292895da9afa5b60b9d3014f39294

c99-mad2.txt 141.2 2517 3ca5886cd54d495dc95793579611f59a

c99-v1.txt 139.5 2900 d8ae5819a0a2349ec552cbcf3a62c975

c99-ud.txt 146.4 1 e0d3b34fbe71a77133951e0f0ff1de4b

4.6.1 through to 4.6.4 demonstrate and analyse the matrices and graphs produced by each option

combination.

Given that these samples were all derived from the same original shell (or variants thereof), the

levels of similarity observed in this subset were substantially higher than those observed in the

full collection (see Section 4.8). Although they do not demonstrate outcomes representative of

the entire sample set, the results are nevertheless useful for concisely demonstrating how the

matrices and associated graphs can be interpreted, and how meaningful sample relationships

can be identified.

4.6.1 Function Name Similarity

Figure 4.5a shows the function name similarity matrix and associated heatmap generated by the

Matrix.py and Heatmap.py modules when run against raw versions of the c99 family of shells.

Both demonstrate a relatively sparse distribution of similarity, with high values occurring only

as a result of comparing samples against themselves. Of particular interest are the ud and mad1

variants, which exhibit no function name similarity to other samples in their raw forms. Levels

of similarity befitting shells derived from the same source were only observed between the c99,

locus, and bd samples, while the v1 variant recorded similarity scores of 40% against each of

these shells.

The dendrogram in Figure 4.5b clarifies the relationships hinted at by the heatmap in Figure

4.5a. The close proximity of the arch connecting the c99 and bd samples to the x-axis indicates

that they share the highest percentage of function names, while the locus shell shares an equal

percentage with them both. As was the case for both the matrix and heatmap diagrams in

Figure 4.5a, the raw versions of the ud, mad1, and mad2 shells (located on the far right of the

dendrogram) demonstrated no relationship to any other samples.

The trio of diagrams shown in Figure 4.5 illustrate the usefulness of each method of representing

similarity. The matrix provides exact matching values for every sample pair, but is the least

visually accessible of the three diagrams. Regions of high similarity are more prominent in the

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 87

heatmap diagram, while sample relationships (and their respective magnitudes) are most easily

identified by consulting the dendrogram in Figure 4.5b. A combination of the three techniques

allows the viewer to identify relationships and regions of interest quickly while still maintaining

the resolution provided by the original matrix.

Figure 4.6a depicts the function name similarity matrix and associated heatmap generated by

the Matrix.py and Heatmap.py modules when run against the decoded collection of c99 shells.

Both diagrams demonstrate far higher and more widespread levels of similarity when compared

to the results displayed in Figure 4.5a, which were obtained when the same similarity measure

was used to compare raw versions of the c99 shell collection. An analysis of both the matrices

showed that 30 of the 49 values increased, with the average similarity between samples rising

from 28.12 among raw shells to 48.08 among their decoded counterparts.

A large portion of the observed increase in function name similarity can be attributed to the

deobfuscation of the mad2 c99 variant. As is demonstrated by the heatmap in Figure 4.5a,

this sample initially displayed very little similarity to all other shells in the collection. After

deobfuscation, however, it improved its scores against every other shell and became the sample

with the highest average similarity (as is evidenced by the darker blocks connecting it to its

heatmap counterparts in Figure 4.6a).

Another significant increase in similarity occurred between the ud and mad1 samples. The

matrix in Figure 4.5a shows that these samples registered no function name similarity prior

to deobfuscation, whereas the matrix in Figure 4.6a demonstrates a score of 96 between the

decoded versions of the shells. Further investigation revealed that both samples were heavily

obfuscated in their raw forms. The ud variant was contained within 91 nested idiomatic eval

obfuscation constructs. All of these constructs also incorporated the base64_decode() and

gzinflate() decoding and decompression functions, while 46 of them made further use of

the str_rot13() string manipulation function. The mad1 c99 variant, by comparison, was

obscured by 11 idiomatic eval(gzinflate(base64_decode(...))) constructs.

Figure 4.6b shows the function name relationships between the c99 family of shells in their

decoded forms. In contrast to the dendrogram depicting function name similarity between raw

samples in Figure 4.5b, this diagram demonstrates significant relationships between all shells

in the collection, including the ud, mad1, and mad2 variants, which were absent from any

relationship in their raw forms. The strongest relationship was detected between the ud and

mad1 variants, which would previously have been deemed entirely unrelated owing to their use

of multiple nested obfuscation constructs.

4.6.2 Function Body Similarity

The tendency of malware authors to reuse self-contained blocks of code such as functions

(Christodorescu and Jha, 2004; Chouchane and Lakhotia, 2006) would lead one to expect that

88

(a) Similarity matrix and heatmap based on function names extracted from raw c99 samples

(b) Dendrogram based on function names extracted from raw c99 samples

Figure 4.5: Function name similarity between raw c99 derivatives

89

(a) Similarity matrix and heatmap based on function names extracted from decoded c99 samples

(b) Dendrogram based on function names extracted from decoded c99 samples

Figure 4.6: Function name similarity between decoded c99 derivatives

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 90

the results obtained during function body analysis should closely resemble those discovered in

Section 4.6.1 when comparing function names. Theoretically, if all reused functions were copied

in their entirety, the similarity values for function name matches between samples should be

identical to the values representing their function body matches.

The diagrams generated by the Matrix.py and Heatmap.py modules when using user-defined

function bodies as the measure of similarity between raw samples are shown in Figure 4.7a. As

was expected, the results closely resemble those obtained when comparing the same samples

based on their shared function names. A comparison of the heatmaps in Figures 4.5a and

4.7a, however, shows that although the pattern of similarity distribution was almost identical,

the values obtained for function body matching were markedly lower than their function name

counterparts. An examination of the actual matrix values in Figures 4.5a and 4.7a confirms this

– on average, each positive value in the function bodies matrix was found to be 27.5% smaller

than the corresponding value in the function names matrix.

The discrepancy discussed in the previous paragraph can be partially accounted for by the

limitation of the Ssdeep library’s compare() function, which causes it to return values lower

than 100 for identical strings when the length of the strings falls below 200 characters (refer to

Section 2.10.4 for a discussion of this). Further analysis found that 448 of the 2044 function

body comparisons that were performed during the case study involved at least one sample with

fewer than the requisite 200 characters.

As was the case for both the matrix and the heatmap, the dendrogram representing function

body similarity between raw samples in Figure 4.7b demonstrates similar relationship structures

to its function name counterpart in Figure 4.5b. The strongest relationship was observed between

the c99 and bd variants, although the increased height of the arch connecting the two samples

indicates that the connection was not as pronounced as it was when the two samples were

compared based on shared function names. The ud, mad1, and mad2 samples once again

demonstrated no substantial relationships to other samples in the collection in their raw forms.

Figure 4.8a shows the matrix and heatmap that were generated when comparing function bodies

between decoded c99 shell samples. Both diagrams demonstrate a marked improvement in sim-

ilarity compared to the results obtained when the raw versions of these samples were compared

using the same measure of similarity (see Figure 4.7a). Every value in the similarity matrix

either increased or remained the same, with the average similarity score rising from 20.39 for

raw samples to 29.71 for decoded samples. As is evidenced by the absence of clear blocks in the

heatmap in Figure 4.8a, each sample displayed at least some similarity to every other shell in

the decoded collection.

As was the case when comparing function names in Section 4.6.1, the largest contribution to the

increased similarity among decoded samples was made by the mad2 variant. In its raw form the

shell registered very little similarity to any other sample in the collection – after deobfuscation

91

(a) Similarity matrix and heatmap based on function bodies extracted from raw c99 samples

(b) Dendrogram based on function bodies extracted from raw c99 samples

Figure 4.7: Function body similarity between raw c99 derivatives

92

(a) Similarity matrix and heatmap based on function bodies extracted from decoded c99 samples

(b) Dendrogram based on function bodies extracted from decoded c99 samples

Figure 4.8: Function body similarity between decoded c99 derivatives

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 93

it recorded the highest overall level of similarity to other samples. Both the matrix and the

heatmap displayed in Figure 4.8a support this: the matrix values relating to mad2 rose by an

average of 58.05%, which is reflected in the heatmap by the presence of darker blocks connecting

it to the other shells in the collection.

The deobfuscation of the heavily obscured ud and mad1 c99 variants once again increased their

inter-sample similarity from zero to a significant score of 72. This close relationship is clearly

depicted by the dendrogram in Figure 4.8b. Although the shape of this dendrogram is almost

identical to the one shown in Figure 4.6b (which was created using function name matches as

the measure of similarity), all of the relationships are markedly weaker. The arch connecting

the ud and mad1 samples, for example, is approximately four times higher in Figure 4.8b than

it is in Figure 4.6b, indicating a substantially weaker relationship. This is consistent with the

results obtained when matching function bodies between raw samples earlier in this section.

4.6.3 Hashed Chunks Similarity

The results outlined in Sections 4.6.1 and 4.6.2 of this case study used function names and

bodies extracted from PHP code to determine the levels of similarity between members of the

c99 family of shells. While this approach proved effective in finding shared PHP features, it

ignores the HTML segments that are often included in the file as part of a sample’s GUI. As

is detailed in Section 3.5.3, the HashChunks.py module processes a given sample in its entirety,

and the results thus represent a combination of PHP and HTML code.

Figure 4.9a displays the matrix and heatmap that were generated when comparing raw c99

shell samples that had been split into chunks and hashed using the Ssdeep fuzzy hashing algo-

rithm. The distribution pattern resembled those encountered when comparing function names

and bodies between raw shells (see Figures 4.5a and 4.7a), with the notable exception of the

mad2 variant, which demonstrated far greater similarity when hashed chunks were used as the

similarity measure. Further examination determined that this increase was due to the high

percentage of shared HTML between the mad2 sample and the other samples in the c99 family

(refer to Section 4.6.4 for a detailed comparison of the HTML produced by these shells).

The dendrogram in Figure 4.9b shows the relationships between raw c99 samples when com-

pared using the hashed chunks measure of similarity. As was the case with the function name

and body matches between raw samples in Sections 4.6.1 and 4.6.2, the closest relationship was

observed between the c99 and bd samples. Unlike the previous sections, however, the mad2

shell demonstrated significant relationships with all but the heavily obfuscated ud and mad1

variants as a result of the HTML that it shares with these samples.

Figure 4.10a shows the matrix and heatmap that were generated when comparing the hashed

chunks of the decoded c99 shell collection. Following the trend demonstrated throughout the

94

(a) Similarity matrix and heatmap based on hashed chunks extracted from raw c99 samples

(b) Dendrogram based on hashed chunks extracted from raw c99 samples

Figure 4.9: Hashed chunk similarity between raw c99 derivatives

95

(a) Similarity matrix and heatmap based on hashed chunks extracted from decoded c99 samples

(b) Dendrogram based on hashed chunks extracted from decoded c99 samples

Figure 4.10: Hashed chunk similarity between decoded c99 derivatives

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 96

case study, the average similarity among decoded samples was found to be significantly higher

than that observed when using the same measure of similarity to compare raw versions of the

shells. For the hashed chunks measure in particular, the average similarity score rose from 29.37

for raw samples to 43.98 for their decoded counterparts, almost exclusively as a result of the

additional code made available through the deobfuscation of the ud and mad1 c99 variants.

The highest similarity score in the matrix in Figure 4.10a was observed between the mad1 and

mad2 variants. Although superficially related by name, these two samples did not display a

significant level of similarity when compared using function names and bodies as measures of

similarity (see Figures 4.6b and 4.8b). Further investigation revealed that although the mad2

variant contained multiple functions that were not present in the mad1 sample, the two shells

produced almost identical HTML when run in a browser environment, as is demonstrated in

Section 4.6.4. Since the HashChunks.py module hashes samples in their entirety, this HTML was

taken into account when comparing the two shells, resulting in a significant level of similarity

that was previously undetected by the function name and body approaches used in Sections

4.6.1 and 4.6.2.

The dendrogram in Figure 4.10b illustrates the relationships between decoded versions of the

c99 family of shells, as determined by a comparison of their hashed sample segments. As a

result of the inclusion of HTML in the comparison process, the structure of the diagram is

different to those in Figures 4.6b and 4.8b, which were generated using function name and

function body matching, respectively. The closest relationship was observed between the mad1

and mad2 samples, which were found to share the highest percentage of HTML code of all the

shells in the collection (see Section 4.6.4). By contrast, although the bd and mad2 variants were

found to contain similar PHP code in Figures 4.6b and 4.8b, they were not as closely related

when comparing their hashed chunks. A comparison of the two shells (detailed in Section 4.6.4)

demonstrated that the two samples shared a far lower percentage of HTML code than the other

c99 variants.

4.6.4 HTML Similarity

Figure 4.12a displays the matrix and heatmap that were generated when making comparisons

between the c99 family of shells based on the similarity of the HTML produced by each sam-

ple. Both demonstrate a fairly even distribution of similarity between samples, with the notable

exception of the v1 variant, which registered no similarity to any other shell in the collection.

This observation is corroborated by the shape of the dendrogram in Figure 4.12b – no relation-

ships were discovered between the v1 shell and its c99 family members. Further investigation

revealed that this was due to one of the limitations of Ssdeep discussed in Section 2.10.4: the

library’s compare() function is unable to compare hashes with different block sizes. Since the

block size of a fuzzy hash generated by the Ssdeep algorithm is dependent on the size of the file

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 97

used as input, two files can generate incompatible hashes if one file is significantly larger than

the other.

Figure 4.11 shows an extract of the HTML generated by the v1 shell sample when run in a

browser environment. This demonstrates the combination of arbitrarily placed HTML elements

and PHP code snippets that was found throughout the shell’s lengthy GUI. A malformed output

of this nature suggests that the sample was either incomplete at the time of publishing or simply

poorly coded. Evidence of the former included the omission of the version number in the shell’s

title, as well as a comment towards the beginning of the sample’s source code stating that it

was in a “beta testing” phase.

Figure 4.11: Extract from the GUI of the v1 shell sample

A more detailed analysis of the HTML generated by the v1 shell shown in Figure 4.11 revealed

that the file length far exceeded those produced by the other c99 variants. The average file

size for the HTML generated by the other shells in the collection was found to be 28.47 kB,

with each file containing an average of 32 010 characters. By contrast, the v1 variant produced

98

(a) Similarity matrix and heatmap based on HTML extracted from c99 samples

(b) Dendrogram based on HTML extracted from c99 samples

Figure 4.12: Generated HTML similarity between c99 derivatives

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 99

a 145.5 kB file containing 145 487 characters. As a result of this significant difference in file

length, the v1 shell’s HTML was assigned a block size of 3 072 characters compared to the

block size of 768 that was assigned to the HTML produced by the other samples. Although the

library’s comparison algorithm is capable of reconciling two hashes when one hash has a block

size of no more than double that of the other (see Section 2.10.4 for a description of how this is

achieved), in this case the discrepancy proved too large and a value of zero was thus returned

for each attempted comparison.

The dendrogram depicting HTML similarity in Figure 4.12b demonstrated a close relationship

between the GUIs of the bd, ud, c99, and locus shell samples. To evaluate the accuracy of

this representation, each of the samples was rendered in a browser environment in an attempt

to identify visual similarities between their respective interfaces.

Figure 4.13 displays the resulting GUIs of the bd, ud, c99, and locus shells. Each of the

samples was found to share a common overall structure. All but the locus variant began with

a title (often including the name and version of the shell), before going on to provide information

about the environment in which the shell was being run. This information included a profile of

the current operating system, access control information for the current user, IDs for all available

security groups, the status of PHP’s safe mode feature, the path and permissions of the working

directory, and finally the statistics for the current storage medium. The remote functionality

provided by each of these four shells also proved to be identical: in addition to the capabilities

typically supported by RATs (such as file uploading, file manipulation, system profiling, and

code execution), all samples included the ability to bypass PHP’s safe mode feature.

Differences between the interfaces of the bd, ud, c99, and locus shells were found to be largely

cosmetic and ego-driven in nature. The diagrams in Figure 4.13 demonstrate changes in colour

schemes and the addition of signatures crediting the individuals and/or groups that were respon-

sible for coding or modifying that particular version of the shell. Sections of functionality in each

of the GUIs (apart from that of the locus variant in Figure 4.13c) were even grouped according

to the aliases of their authors, ‘Shadow’ and ‘Preddy’. This kind of vanity amongst authors of

RATs was found to extend to source code comments touting the usefulness of modifications

made by the contributors.

The other relationship illustrated by the dendrogram in Figure 4.12b occurred between the mad1

and mad2 c99 variants. Although Sections 4.6.1 and 4.6.2 identified no substantial sharing of

source code (in the form of function names and bodies), Figure 4.14 demonstrates that their

GUIs were found to be almost identical. Only two slight visual differences were detected: the

title of the shells, and their closing author signatures.

The HTML output of the ud shell in Figure 4.13d contains evidence of the deliberate obfuscation

that malware authors routinely employ to avoid detection. The last line of the sample’s GUI

asserts that it has been certified as “antivirus undetected” by its author/modder, which is

100

(a) GUI of the bd shell (b) GUI of the c99 shell

(c) GUI of the locus shell (d) GUI of the ud shell

Figure 4.13: Interfaces of the bd, c99, locus, and ud shell samples

4.6. SIMILARITY ANALYSIS CASE STUDY: THE C99 FAMILY OF SHELLS 101

consistent with the results relating to the ud shell discovered throughout the case study. The

sample displayed very little function name or body similarity to the other shells in the collection,

even in its decoded form, despite providing the same functionality as the bd, c99, and locus

variants (as can be seen in Figure 4.13). In addition to this, Section 4.6.1 details how the ud

shell was found to employ 91 nested eval(gzinflate(base64_decode())) constructs as

a barrier to code inspection. All of these findings suggest a deliberate attempt to harden the

sample against malware detectors and other forms of analysis.

(a) GUI of the mad1 shell (b) GUI of the mad2 shell

Figure 4.14: Interfaces of the mad1 and mad2 shell samples

4.6.5 Summary

The purpose of this case study was to demonstrate the functionality of the Matrix.py, Heatmap.py,

and Dendrogram.py modules in a concise and meaningful way. Detailed analyses and interpre-

tations of both the similarity matrices and their associated graphs were provided throughout to

demonstrate how the different representations can be used to identify meaningful relationships

between samples. The same approaches outlined in this case study can be readily applied to the

more comprehensive tests detailed in Section 4.7.

During testing all of the available matrix combinations were employed to create the most compre-

hensive overview of sample similarity. The function name and function body measures focussed

on PHP language features extracted from the sample source code, while the HTML similarity

targeted the GUIs produced by each of the shells when run in a browser environment. The

hashed chucks of each sample were also compared in an attempt to evaluate both the similarity

of the HTML and the PHP code embedded within it. The results produced using these different

measures provided some insight into the advantages and disadvantages of each approach.

As was expected, the results produced in Sections 4.6.1 and 4.6.2 during function name and

function body matching were found to be very similar. Although the values recorded when

comparing function bodies were lower on average than their function name counterparts, the

4.7. COMPREHENSIVE TESTS 102

heatmaps produced by both measures of similarity demonstrated almost identical match dis-

tributions. The shape of the dendrogram representing relationships between samples based on

their function body content also mimicked the shape generated when comparing function names,

albeit with slightly weaker relationships.

The analysis of the HTML generated by each of the c99 variants performed in Section 4.6.4

revealed two distinct clusters of similarity. These clusters were then evaluated through a visual

inspection of the GUIs of the samples in each cluster. Section 4.6.3 drew conclusions about

sample relationships based on an examination of fuzzy hashes generated from both the HTML

present in each file and the PHP code embedded within it.

Regardless of the chosen method of analysis, higher levels of similarity were always observed when

comparing samples that had been processed by the decoder. This trend was observed across

similarity measures as a result of the increase in the amount of code that was made available for

analysis. As a result of the decoding process, the average file size of the shells increased from

146.49 kB (for raw samples) to 151.27 kB (for their decoded counterparts). The presence of

additional code allowed the batch modules to extract features that were previously unavailable

and which could subsequently be compared to more accurately determine the similarity between

two shell samples.

4.7 Comprehensive Tests

Although the smaller c99 case study in the previous section is useful for demonstrating the

similarity analysis process in a more concise and manageable manner, the goal of the system

was to identify and interrogate areas of interest within larger datasets. Figure 4.15 shows

the heatmap that was generated by the Heatmap.py module when performing function name

matching among a random selection of 1000 decoded shells from the test collection. This number

was chosen to preserve the resolution of the resulting image, as diagrams produced using the

full collection of 2 129 samples were found to be illegible when fitted into an A4 page.

The diagram presented in Figure 4.15 provides an overview of the distribution of similarity within

a collection of samples, but the sheer number of shells involved in the comparison meant that

it lacked the resolution required for detailed analysis. For this reason, these large visualisation

aids were most suited to the identification of general patterns and trends. In-depth analysis of

the kind presented in the case study in Section 4.6 required that these comprehensive diagrams

be split into more manageable and informative subsections. To demonstrate how this can be

achieved, the following sections present two examples of how areas of interest can be identified,

magnified, and analysed using each of the available visual representations of similarity.

103

Figure 4.15: Heatmap based on the function names extracted from decoded shells

4.7. COMPREHENSIVE TESTS 104

4.7.1 Heatmap Cluster Identification and Deobfuscation

For the first of the drill-down demonstrations, a random selection of 150 raw shells was used to

create a large heatmap that could be used to identify areas of elevated similarity. The measure

of similarity used in this instance was the percentage of matching function names, which drew on

the function lists created by the Functions.py module. One similarity cluster was then identified

and expanded by running the clustered samples through the decoder and then re-rendering the

cluster to gauge any differences in observed similarity.

Figure 4.16 shows the heatmap that was obtained by running the 150 shells through the analysis

process. Once this was completed, an area of interest (indicated by the selection pane towards the

bottom left of Figure 4.16) was selected for the purpose of demonstration. An enlarged version

of this area is displayed in Figure 4.17. In order to more accurately determine how similar this

collection of samples was, all of the shells were run through the decoder, a new matrix was

created, and a new heatmap was rendered, as demonstrated in Figure 4.18. A comparison of the

heatmaps created before and after the deobfuscation process (shown in Figures 4.17 and 4.18,

respectively) highlighted the improvement in similarity due to the increased availability of code

for analysis.

The drill-down approach to similarity analysis had the added benefit of improving the efficiency

of the system when targeting a single similarity cluster. Once an area of interest had been

specified, only those samples that fell within it needed to be decoded, compared, and then

re-rendered. Although the performance of the batch modules was found to scale linearly (as

is described in Section 4.5), the number of comparisons performed by the Matrix.py module

was proportional to the square of the number of samples in the collection. Re-rendering a

smaller selection of samples instead of the entire collection contributed to a significant increase

in performance and efficiency.

4.7.2 Dendrogram Relationship Identification

As discussed in Section 2.11.3, dendrogram structures are useful for visualising relationships

between entities based on a given similarity metric. Figure 4.19 shows the dendrogram that was

generated by the Dendrogram.py module when performing function name matching among the

same selection of 1000 decoded shells used in Section 4.7.1.

As was the case with the heatmap in Section 4.7.1, Figure 4.19 lacks the resolution required

for detailed analysis. Despite this, it can be used to identify relationship clusters that can

subsequently be examined more closely. Three of the most distinct sample groupings are denoted

by clusters X, Y, and Z. These three clusters are magnified in Figures 4.20, 4.21, and 4.22,

respectively.

105

Figure 4.16: Similarity heatmap based on the function names extracted from a random selection
of 150 raw shells

Figure 4.17: Focused similarity heatmap based on the cluster identified in Figure 4.16

4.7. COMPREHENSIVE TESTS 106

Figure 4.18: Similarity heatmap based on decoded version of the samples shown in Figure 4.17

Notwithstanding the sample naming inconsistencies discussed in Section 4.1, a brief examination

of the x-axis labels of cluster X in Figure 4.20 suggested that the grouped samples were either

derivatives of or vastly similar to the seminal r57 shell in terms of user-defined function names.

Although many of the samples were found to be identical according to this particular similarity

measure (as is evidenced by the horizontal bars just above the x-axis), the presence of the tiered

levels of similarity supported the hypothesis that new RATs are often created by modifying

existing shells. In this case the detected modifications would have taken the form of either the

addition or removal of user-defined functions. This is further supported by the depiction of

cluster Y in Figure 4.21, which was found to contain tiered samples related to the wso shell.

Although seemingly meaningful, the large grouping denoted by cluster A in Figure 4.19 was

found to be a collection of otherwise unrelated samples that simply shared the same number of

function name matches and were thus placed at the same level in the dendrogram.

The grouped samples of cluster Z in Figure 4.22 were all found to be related to the influential

c99 and c100 shells based on the similarity of their user-defined function names. As two of the

most widely-used RATs (Wardman et al., 2009; Moore and Clayton, 2009), it is unsurprising that

this collection was the largest of the clusters identified in Figure 4.19. Although several samples

were found to share identical function names (as was observed among the r57 derivatives in

Figure 4.20), the fluctuating heights of the arches connecting shells once again suggested that

many of them were created as variations of an existing RAT.

The horizontal bars above the x-axis denoting identical samples in Figures 4.20, 4.21, and 4.22

illustrate the limited scope of the function names measure of similarity when used in isolation.

As explained in Section 4.1, each of the samples in the sample collection was tested to ensure

uniqueness. If one were to use just the aforementioned figures as a reference, however, it would

107

Figure 4.19: Dendrogram based on the function names extracted from 1000 decoded shells

108

Figure 4.20: Focused dendrogram based on cluster X in Figure 4.19

Figure 4.21: Focused dendrogram based on cluster Y in Figure 4.19

4.7. COMPREHENSIVE TESTS 109

Figure 4.22: Focused dendrogram based on cluster Z in Figure 4.19

appear to contain several duplicates. In the absence of a system that combines the outputs

produced using different measures of similarity (and which is discussed as a possible extension to

this research in Section 5.3), it is therefore important that function name matching be considered

in conjunction with the other measures listed in Section 3.5.

4.7.3 Summary

The purpose of the comprehensive tests presented in this section was to demonstrate how sim-

ilarity analysis can be performed on larger datasets. To accomplish this, the Heatmap.py and

Dendrogram.py modules were used to create diagrams representing the function name matches

between 1000 randomly selected RATs. These diagrams were later interpreted and analysed to

determine similarity trends between samples in the collection.

Although both the heatmap and dendrogram proved useful for identifying high-level features

(such as areas of high similarity and clusters of related shells), the sheer size of both diagrams

obscured the detail required for more accurate analysis. In both cases, specific sections of the

larger diagrams were therefore extracted, magnified, and – in the case of the heatmap – re-

rendered to increase the resolution to a functional level. Once this had been achieved, analysis

similar to that presented in the case study in Section 4.6 could be successfully carried out.

4.8. EVALUATION OF SIMILARITY MEASURES 110

Table 4.6: Batch modules similarity statistics for raw samples

Total Average Variance Std Deviation

Function names 10243768 2.26 1.57 1.25

Function bodies 4306008 0.95 1.64 1.28

Hashed chunks 5303189 1.17 0.24 0.49

HTML 1949035 0.43 0.78 0.88

Table 4.7: Batch modules similarity statistics for decoded samples

Total Average Variance Std Deviation

Function names 10243768.66 2.69 1.53 1.28

Function bodies 4306008.95 1.09 1.66 1.29

Hashed chunks 5303189.97 1.53 0.24 0.49

HTML 90652.82 0.45 0.79 0.89

4.8 Evaluation of Similarity Measures

Each of the similarity measures represented by the individual modules described in Section 3.5

target specific features of PHP-based RATs. Both the Function.py and FunctionBodies.py mod-

ules extract information about function constructs, the HtmlDump.py module targets embedded

HTML, and the HashChunks.py module processes a file in its entirety. Although the accuracy of

each of these measures is difficult to determine without a reference set of similarity values, it is

nonetheless useful to compare the results produced by each of these measures when run against

the test collection outlined in Section 4.1.

Tables 4.6 and 4.7 summarise the results obtained by each of the four measures of similarity

when run against raw and decoded samples, respectively. As was expected, the average similarity

values detected by all of these measures were significantly lower than the levels that were observed

when analysing seven of the c99 derivatives in Section 4.6, as those samples were known to be

related prior to analysis and are not representative of the entire dataset. Despite this, many

of the trends discovered during the c99 case study were found to persist when analysing the

results obtained from the full sample collection.

As was the case when comparing c99 derivatives in Section 4.6, the process of deobfuscating

and normalising shell samples prior to analysis had the effect of increasing the observed levels of

similarity for all similarity measures. A comparison of the average similarities recorded by each

of the different measures for raw and decoded sample sets demonstrated a minimum increase of

4.65% (when comparing HTML dumps), and a maximum increase of 30.77% (when comparing

hashed file chunks). The similarity levels across the different measures increased by an average of

17.30%. These increases clearly demonstrate the benefits of both the deobfusaction and format

normalisation performed by the decoder component described in Section 3.3.

4.9. CHAPTER SUMMARY 111

The seemingly illogical disparity between the function name and function body measures of

similarity (which was also observed during the case study described in Section 4.6) can be

attributed to a combination of three possible scenarios:

1. The concise and generic nature of function names means that comparisons between them

are more likely to return false positives (i.e., functions that share the same name but

have vastly different purposes and implementations). This is far less likely to occur when

comparing function bodies, which contain far more content and are thus less likely to be

mistakenly correlated.

2. Although malware authors are known to reuse a substantial amount of code (including

functions) when creating newer versions (Walenstein et al., 2007; Nair et al., 2010; Walen-

stein and Lakhotia, 2007), the implementations of these functions could be modified during

the update process, resulting in lower implementation similarity.

3. The block size limitation of the Ssdeep fuzzy hashing algorithm discussed in Sections 2.10.4

and 4.6.2 causes function bodies with less than 200 characters to return an artificially low

similarity score. As a result of this, some identical function implementations may have

been recorded as being only partially similar, thereby reducing the overall function body

similarity scores.

4.9 Chapter Summary

This chapter presented the results that were obtained during the testing of the various sys-

tem components. It began with an evaluation of the decoder, which was found to be capable

of removing obfuscation constructs ranging from rudimentary eval() and preg_replace()

functions to more complex structures with multi-layered obfuscation and auxiliary string manip-

ulation functions. The individual modules were used to process a derivative of the r57 shell to

test their feature-extraction capabilities. A similarity case study of the c99 family of shells was

presented to demonstrate how the diagrams produced by the matrix and visualisation modules

can be interpreted to identify meaningful inter-sample relationships. Finally, two large-scale

tests were performed to demonstrate how areas of interest can be isolated and magnified to

identify similarity clusters within a large dataset.

5
Conclusion

The abundance of PHP-based RATs found in the wild has led malware researchers to develop

systems capable of tracking and analysing these shells (Bailey et al., 2007; Baxter et al., 1998;

Chouchane et al., 2007). In the past, shell relationships were ably identified using signature

matching, a process that is currently unable to cope with the sheer volume and variety of web-

based malware in circulation. Although a large percentage of newly-created webshell software

incorporates portions of code derived from seminal shells such as c99 and r57, they are able

to disguise this by making extensive use of obfuscation techniques intended to frustrate any

attempts to dissect or reverse engineer the code.

In response to the problem outlined above, this thesis began in Chapter 2 by contextualising the

research and providing an overview of background information in the fields of code obfuscation

and similarity analysis. This included a discussion of relevant features of the PHP language, as

well as a description of the basic structure and capabilities of a typical web shell. An overview

of the various methods of obfuscating code was also presented, with particular emphasis on

idiomatic code hiding constructs that are unique to RATs written in PHP. An evaluation of

several common approaches to software similarity analysis followed, including the concept of

fuzzy or approximate hashing. Next three techniques for creating intuitive visual representations

of the results of similarity analysis and hierarchical clustering were described. The chapter

concluded with a critical overview of work already undertaken in the fields of code deobfuscation

and similarity analysis.

112

113

Chapter 3 presented the design and implementation of the system responsible for the detection

of derivative malware samples written in PHP. A high-level overview of the system’s structure

was presented, including an description of how test samples are passed from one component to

another. The two download scripts responsible for retrieving and storing these files were then

introduced, as was the decoder component, which is used to deobfuscate and normalise sample

inputs prior to analysis. Viper, the malware analysis framework that was used as the basis

for the similarity analysis system, was described thereafter. This was followed by an outline of

the individual and batch modules that were used to extract pertinent features for subsequent

comparison by the matrix module. The chapter concluded with a description of the two modules

used to create visualisations of the results produced by the Matrix.py module for the purpose of

identifying meaningful inter-sample relationships.

The results of the extensive system testing that was undertaken to determine the efficacy of

each component were presented in Chapter 4. First, the decoder component was subjected to a

range of tests designed to evaluate its ability to remove a variety of obfuscation constructs. This

was followed by an analysis of the results produced by the individual modules when extracting

comparable features from a derivative of the seminal r57 web shell. The Matrix.py, Heatmap.py,

and Dendrogram.py modules were critically evaluated through the use of a case study involving

the c99 family of shells. The chapter concluded by demonstrating the system’s ability to simplify

and re-render large complex visualisations to identify clusters of related samples in greater detail.

As outlined in Chapter 1, the five main goals of this research were as follows:

1. The creation of a decoder component capable of normalising and deobfuscating test sam-

ples prior to similarity analysis. The purpose of this component would be to reverse

commonly-used obfuscation idioms, thereby exposing more code for analysis.

2. The construction of four separate preprocessing modules designed to extract relevant fea-

tures for comparison.

3. The implementation of a modular system designed to compare the features extracted by

the preprocessing modules and create representative similarity matrices.

4. The creation of two visualisation modules capable of creating graphic representations of

the results obtained during similarity analysis for ease of interpretation. The purpose of

these modules is to facilitate the identification of meaningful relationships among samples

by analysts.

5. An evaluation of the effects of the deobfuscation process on the results produced during

similarity analysis.

114

Chapter 4 demonstrated the extent to which each of these goals was met:

1. Testing performed in Section 4.2 demonstrated the decoder component’s ability to remove a

wide variety of idiomatic obfuscation constructs, ranging from simple eval() and preg_-

replace() functions to multi-layered obfuscation constructs containing auxiliary string

manipulation functions. This deobfuscation process was successfully applied to the full

collection of 2 129 test samples in preparation for similarity analysis.

2. The results of the individual module tests presented in Section 4.4 showed that each

module was capable of correctly extracting and recording their respective sample features.

Function names and bodies were ably located by the Function.py and FunctionBodies.py

modules, while the HashChunks.py and HtmlDump.py modules correctly extracted hashed

file chunks and embedded sections of HTML, respectively. All results were confirmed via

manual observation to ensure their accuracy.

3. The comprehensive case study outlined in Section 4.6 was used to test the capabilities

of the remaining Matrix.py, Heatmap.py, and Dendrogram.py modules when run against a

restricted sample set, and to demonstrate how these results can be interpreted to identify

meaningful relationships between samples. The Matrix.py module was successfully used

to create representative similarity matrices for each of the four similarity measures. Its

capabilities were further tested during the large-scale testing undertaken in Section 4.7,

where it was able to create more complex matrices containing one million individual match

values.

4. The two visualisation modules proved to be useful for providing a comprehensive overview

of similarity, even in large datasets. Sections 4.6 and 4.7 both demonstrated how these

modules can be used to create intuitive visualisations that enable the viewer to easily

identify similarity trends for a given set of malware samples. Regions of high similarity

were most ably highlighted by the heatmap diagrams, while sample relationships (and

their respective magnitudes) were most easily identified through a consultation of the

dendrograms generated in each case.

5. It was found that the deobfuscation performed by the decoder component prior to analysis

dramatically increased the observed levels of similarity between test samples. This was

first made apparent during the case study undertaken in Section 4.6. In some cases, heavily

obfuscated shells that initially displayed little similarity to other samples were found to

be almost identical when analysed in their decoded forms. The primary reason for this

improvement in matching accuracy was found to be the sharp increase in the amount of

code available for use by the remainder of the similarity analysis system. Further proof of

the efficacy of the decoder component was presented in Section 4.8, where it was shown

to improve the observed levels of similarity of all measures by an average of 17.30%.

5.1. SECONDARY OUTCOMES 115

In summary, this research has achieved the goals outlined in Section 1.2. A malware analysis

system that is capable of using a variety of similarity measures to determine derivative relation-

ships between RATs written in PHP was successfully developed and tested. In addition to this,

it was determined that the novel pairing of such a system with a decoder component able to

detect and reverse idiomatic obfuscation constructs vastly increased the accuracy of the results

by exposing additional code for analysis.

5.1 Secondary Outcomes

In addition to fulfilling of the primary research goals, the process of designing and testing a

system capable of identifying derivative shell relationships produced a number of secondary

outcomes and observations:

• The use of multiple measures of similarity allowed for a more thorough overview of inter-

sample relationships. Both the compare_funcs() and compare_bodies() functions

were used to identify oft-copied PHP language features, while the compare_html()

function was able to highlight the resemblance between HTML-based shell GUIs. The

compare_chunks() function attempted to evaluate the overall similarity among sample

pairs by splitting both the PHP source code and the embedded HTML into chunks and

comparing their computed fuzzy hashes. By consulting the diagrams produced using each

of these four measures, a more complete picture of similarity could be formed.

• Techniques for isolating and re-rendering specific clusters of similarity from within a larger

diagram were introduced. The sharp increases in resolution observed when dealing with

these smaller clusters enabled in-depth analysis of the kind described while comparing the

c99 family of shells. This drill-down approach to similarity analysis had the added benefit

of improving the efficiency of the system as a whole, as only those samples that fell within

an area of interest needed to be decoded, compared, and then re-rendered. Although the

performance of the batch modules scaled linearly, the number of comparisons performed

by the Matrix.py module was found to be proportional to the square of the number of

samples in the collection. Re-rendering a smaller selection of samples instead of the entire

collection thus contributed to a significant increase in performance and efficiency in each

case.

• Testing of the similarity analysis system provided several insights into the modifications

commonly made by authors when creating new malware variants. Statistics recorded by

the decoder provided evidence of idiomatic code-hiding constructs, while output produced

during HTML comparisons of heavily obfuscated samples such as the c99_ud.txt shell

proclaimed them to be certified as “antivirus undetected”, another clear sign of deliber-

ate obfuscation. An analysis of shell relationships post-deobfuscation also confirmed the

5.2. LIMITATIONS 116

existence of several variants of the influential shells such as c99 and r57, among others.

The GUIs of these variants were often found to be very similar, with most of the changes

occurring in the underlying implementation. Slight differences between the GUIs of related

shells were found to be largely cosmetic and ego-driven in nature – many authors simply

made changes to colour schemes, logos, and version names, or added signatures crediting

the individuals/groups responsible for modifying the shell.

Several of the tools and techniques developed during the course of this research are unique and

constitute an addition to the existing body of knowledge relating to malware analysis. To the

best of the author’s knowledge, no PHP-specific malware source code comparison tools have

been created and successfully tested. The combination of deobfuscation, similarity analysis, and

subsequent visualisation provides a useful and thorough overview of the similarity of these types

of files, and the use of multiple measures of similarity allows for a less one-sided approach to

malware analysis. The combination of visualisation techniques allows similarity to be interpreted

instead of merely acknowledged, and the insights into malware derivation that resulted from this

research open up new areas for further research in the fields of malware evolution and adaptation.

5.2 Limitations

Throughout the course of this research, especially during the testing process, several limitations

of the current system implementation were identified. Some of these limitations exist outside

the scope that was originally defined for this research and can therefore be ignored, while others

are recommended as potential opportunities for future research in Section 5.3.

The most common misconception that was expressed by reviewers of the published portions of

this work was that it was intended as an antivirus solution. As detailed in Chapter 1, the goal of

this research was not to identify new shell variants, but rather to pinpoint derivative relationships

within a collection of known malware. For this reason, no testing was done to ascertain how

adept the similarity analysis system was at determining whether a given sample was malicious.

Although a high level of similarity to a known malware sample might be indicative of malicious

behaviour, further analysis would have to be done to make an informed decision. For this reason,

the system could be used in conjunction with established malware detectors to flag samples as

being suspicious and worthy of further investigation, but not as a standalone antivirus solution.

One of the major limitations encountered during the testing of the system was a lack of reference

similarity values with which to compare the obtained results. This lack of reference data arose

as a result of the uniqueness of both the measures of similarity and the collection of samples

used for the research. Despite this, a combination of rigorous component testing and the manual

verification of observed relationships and patterns contributed to the certainty of the outcomes

of the research.

5.3. FUTURE WORK 117

The block size and minimum length limitations associated with the Ssdeep hashing algorithm

(described in Section 2.10) affected the results produced by the system when using either the

function body or HTML output measures of similarity. Function bodies with less than the

required 200 characters were found to return artificially low similarity scores as a result of the

length limitation, while HTML dumps that differed substantially in length returned a similarity

score of zero as a result of the block size limitation. As a result of these observed discrepancies,

Section 5.3 recommends the implementation of an alternative fuzzy hashing algorithm as one of

the potential improvements to the current system.

5.3 Future Work

During the course of this research, several opportunities for future work were identified:

• Although the four modules described in Section 3.5 proved useful as measures of similarity,

they represent only a few approaches to the detection of code reuse in web shells. In future,

a thorough evaluation of alternate classification methods could be carried out to determine

which approach (or combination of approaches) is most accurate. The following methods

could be considered:

– Control graph matching

– Dynamic sandbox analysis

– Line-by-line analysis

– N-gram analysis

– Normalised compression distance

• According to Flynn’s taxonomy (Chalmers et al., 2002), the decoder, the batch modules,

and the Matrix.py module can all be classified as single instruction sets with multiple data

streams (in this case each of the sample inputs)(Chalmers et al., 2002). No synchronisation

is required between the processing of each sample, and as such the performance of these

components would benefit greatly from the use parallel programming techniques. An

investigation into the use of Graphical Processing Units (GPUs) for these particular tasks

could also be undertaken in an attempt to improve the performance of the similarity

analysis system as a whole.

• Although useful for creating comparable fuzzy hashes, the input length and block size lim-

itations of the Ssdeep approximate hashing algorithm prevent it from producing accurate

results in all situations. For this reason, other approximate hashing algorithms such as sd-

hash (Roussev, 2015) could be investigated as possible replacements. Studies undertaken

by Vassil Roussev have indicated that this algorithm performs better in terms of both

precision and scalability (Roussev, 2012, 2011).

Glossary

API Application Program Interface

ASP Active Server Pages

AST Abstract Syntax Tree

B Bytes

CMS Content Management System

CTPH Context-Triggered Piecewise Hashing

DDOS Distributed Denial of Service

DNA Deoxyribonucleic Acid

FTP File Transfer Protocol

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

kB Kilobyte

JSON JavaScript Object Notation

LAMP Linux, Apache, MySQL and PHP/Perl/Python

MB Megabytes

MD5 Message Digest 5

PC Personal Computer

PHP Hypertext Preprocessor

118

5.3. FUTURE WORK 119

RAT Remote Access Trojan

SHA Secure Hash Algorithm

SQL Structured Query Language

URL Uniform Resource Locator

XXS Cross-site Scripting

References

Abou-Assaleh, T., Cercone, N., Kešelj, V., and Sweidan, R. N-gram-based detection of

new malicious code. In Computer Software and Applications Conference, 2004. COMPSAC

2004. Proceedings of the 28th Annual International, volume 2, pages 41–42. IEEE, 2004.

Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

Argerich, L. Professional PHP4. Professional Series. Wrox Press, 2002. ISBN 9781861006912.

Atkinson, L. and Suraski, Z. Core PHP Programming. Core series. Prentice Hall Computer,

2004. ISBN 9780130463463.

AV Test. Total malware. Statistical reference website, 2015. Accessed: 12 November 2015.

URL https://www.av-test.org/en/statistics/malware/

Baier, H. and Breitinger, F. Security aspects of piecewise hashing in computer forensics. In

IT Security Incident Management and IT Forensics (IMF), 2011 Sixth International Confer-

ence on, pages 21–36. IEEE, 2011. doi:10.1109/IMF.2011.16.

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., and Nazario, J.

Automated classification and analysis of internet malware. In Recent Advances in Intrusion

Detection, pages 178–197. Springer, 2007.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,

and Yang, K. On the (im)possibility of obfuscating programs. In Advances in Cryptology-

CRYPTO 2001, pages 1–18. Springer, 2001. doi:10.1145/2160158.2160159.

Baxter, I. D., Yahin, A., Moura, L., Anna, M. S., and Bier, L. Clone detection using

abstract syntax trees. In Software Maintenance, 1998. Proceedings., International Conference

on, pages 368–377. IEEE, 1998.

Bayer, U., Comparetti, P. M., Hlauschek, C., Kruegel, C., and Kirda, E. Scalable,

behavior-based malware clustering. In Network and Distributed System Security, volume 9,

pages 8–11. Citeseer, 2009.

120

REFERENCES 121

Berdajs, J. and Bosnic, Z. Extending applications using an advanced approach to DLL

injection and API hooking. Software: Practice and Experience, 40(7):567–584, 2010. ISSN

1097-024X. doi:10.1002/spe.973.

Binkley, D. Source Code Analysis: A Road Map. In 2007 Future of Software Engineering,

FOSE ’07, pages 104–119. IEEE Computer Society, Washington, DC, USA, 2007. ISBN 0-

7695-2829-5. doi:10.1109/FOSE.2007.27.

URL http://dx.doi.org/10.1109/FOSE.2007.27

Borello, J.-M. and Mé, L. Code obfuscation techniques for metamorphic viruses. Journal in

Computer Virology, 4(3):211–220, 2008.

Bressert, E. SciPy and NumPy: An Overview for Developers. ” O’Reilly Media, Inc.”, 2012.

ISBN 1449305466.

Brodlie, K., Osorio, R. A., and Lopes, A. A review of uncertainty in data visualization. In

Expanding the Frontiers of Visual Analytics and Visualization, pages 81–109. Springer, 2012.

Bughin, J., Chui, M., and Johnson, B. The next step in open innovation. The McKinsey

Quarterly, 4(6):1–8, 2008.

Buja, A., Cook, D., and Swayne, D. F. Interactive high-dimensional data visualization.

Journal of Computational and Graphical Statistics, 5(1):78–99, 1996.

Campanella, J. J., Bitincka, L., and Smalley, J. MatGAT: an application that generates

similarity/identity matrices using protein or DNA sequences. BMC bioinformatics, 4(1):29,

2003.

Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., and Zwaenepoel, W. Perfor-

mance Comparison of Middleware Architectures for Generating Dynamic Web Content. In

Endler, M. and Schmidt, D., editors, Middleware 2003, volume 2672 of Lecture Notes in

Computer Science, pages 242–261. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-40317-3.

doi:10.1007/3-540-44892-6 13.

Chalmers, A., Reinhard, E., and Davis, T. Practical parallel rendering. CRC Press, 2002.

ISBN 1568811799.

Chen, L. and Wang, G. An Efficient Piecewise Hashing Method for Computer Forensics.

In Knowledge Discovery and Data Mining, 2008. WKDD 2008. First International Workshop

on, pages 635–638. Jan 2008. doi:10.1109/WKDD.2008.80.

Choi, S.-S., Cha, S.-H., and Tappert, C. C. A survey of binary similarity and distance

measures. Journal of Systemics, Cybernetics and Informatics, 8(1):43–48, 2010.

Cholakov, N. On some drawbacks of the PHP platform. In Proceedings of the 9th Interna-

tional Conference on Computer Systems and Technologies and Workshop for PhD Students in

REFERENCES 122

Computing, CompSysTech ’08, pages 12:II.7–12:2. ACM, New York, NY, USA, 2008. ISBN

978-954-9641-52-3. doi:10.1145/1500879.1500894.

Chouchane, M. R. and Lakhotia, A. Using engine signature to detect metamorphic malware.

In Proceedings of the 4th ACM workshop on Recurring malcode, pages 73–78. ACM, 2006. doi:

10.1145/1179542.1179558.

Chouchane, M. R., Walenstein, A., and Lakhotia, A. Statistical signatures for fast

filtering of instruction-substituting metamorphic malware. In Proceedings of the 2007 ACM

workshop on Recurring malcode, pages 31–37. ACM, 2007. doi:10.1145/1314389.1314397.

Christodorescu, M. and Jha, S. Testing malware detectors. ACM SIGSOFT Software

Engineering Notes, 29(4):34–44, 2004.

Christodorescu, M., Jha, S., Kinder, J., Katzenbeisser, S., and Veith, H. Software

transformations to improve malware detection. Journal in Computer Virology, 3(4):253–265,

2007. ISSN 1772-9890. doi:10.1007/s11416-007-0059-8.

Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., and Veith, H. Malware

normalization. Technical report, University of Wisconsin, 2005.

Chuvakin, A. An overview of unix rootkits. iALERT White Paper, iDefense Labs, 2003.

Accessed: 2 June 2015.

URL http://www.megasecurity.org/papers/Rootkits.pdf

Coelho, F. PHP-related vulnerabilities on the National Vulnerability Database. 2013. Accessed

on 25 May 2015.

URL http://www.coelho.net/php-cve.html

Collberg, C., Thomborson, C., and Low, D. A taxonomy of obfuscating transformations.

Technical report, Department of Computer Science, The University of Auckland, New Zealand,

1997.

Decloedt, H. E. and van Heerden, R. Rootkits, trojans, backdoors and new developments.

Proceedings of the Workshop on ICT Uses in Warfare and the Safeguarding of Peace, pages

4–11, 2010.

Denning, P. J. The locality principle. Communications of the ACM, 48(7):19–24, 2005.

Doyle, M. Beginning PHP 5.3. Wiley, 2011. ISBN 9781118057346.

Edem, E. I., Benzaid, C., Al-Nemrat, A., and Watters, P. Analysis of malware be-

haviour: Using data mining clustering techniques to support forensics investigation. In Cyber-

crime and Trustworthy Computing Conference (CTC), 2014 Fifth, pages 54–63. IEEE, 2014.

REFERENCES 123

Ertaul, L. and Venkatesh, S. Jhide - a tool kit for code obfuscation. In 8th IASTED

International Conference on Software Engineering and Applications (SEA 2004), pages 133–

138. 2004.

Everitt, B. S. and Skrondal, A. The Cambridge Dictionary of Statistics. Cambridge Uni-

versity Press, 2002. ISBN 0521766990.

Fayyad, U. M., Wierse, A., and Grinstein, G. G. Information visualization in data mining

and knowledge discovery. Morgan Kaufmann, 2002. ISBN 1558606890.

Friendly, M. and Denis, D. J. Milestones in the history of thematic cartography, statistical

graphics, and data visualization. 2001. Accessed: 12 February 2014.

URL http://www.datavis.ca/milestones

Guarnieri, C. Creating New Modules. Framework reference website, 2015a. Accessed: 7 May

2015.

URL http://viper-framework.readthedocs.org/en/latest/customize/

index.html#create-new-modules

Guarnieri, C. Viper Commands. Framework reference website, 2015b. Accessed: 16 April

2015.

URL http://viper-framework.readthedocs.org/en/latest/usage/

commands.html

Guarnieri, C. Viper Official Documentation. Framework reference website, 2015c. Accessed:

16 April 2015.

URL http://viper-framework.readthedocs.org/en/latest/index.html

Guarnieri, C. Viper Projects. Framework reference website, 2015d. Accessed: 16 April 2015.

URL http://viper-framework.readthedocs.org/en/latest/usage/

concepts.html#projects

Guarnieri, C. Viper Sessions. Framework reference website, 2015e. Accessed: 16 April 2015.

URL http://viper-framework.readthedocs.org/en/latest/usage/

concepts.html#sessions

Haagman, D. and Ghavalas, B. Trojan Defence: A Forensic View. Digital Investigation,

2(1):23–30, 2005.

Hartigan, J. A. Representation of similarity matrices by trees. Journal of the American

Statistical Association, 62(320):1140–1158, 1967. doi:10.1080/01621459.1967.10500922.

Hunter, J. and Dale, D. The matplotlib users guide. 2007. Accessed: 30 March 2015.

URL http://matplotlib.org/users/index.html

REFERENCES 124

Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in Science and Engineering,

9(3):90–95, 2007.

Hutchins, E. M., Cloppert, M. J., and Amin, R. M. Intelligence-driven Computer

Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains.

Leading Issues in Information Warfare & Security Research, 1:80, 2011.

Iam-on, N., Boongoen, T., and Garrett, S. Refining pairwise similarity matrix for

cluster ensemble problem with cluster relations. In Jean-Fran, J.-F., Berthold, M.,

and Horvth, T., editors, Discovery Science, volume 5255 of Lecture Notes in Computer

Science, pages 222–233. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-88410-1. doi:

10.1007/978-3-540-88411-8 22.

Ide, A. PHP Just Grows and Grows. Technical survey website, 2015. Accessed: 18 April 2015.

URL http://news.netcraft.com/archives/2013/01/31/

php-just-grows-grows.html

Jang, J., Brumley, D., and Venkataraman, S. Bitshred: feature hashing malware for

scalable triage and semantic analysis. In Proceedings of the 18th ACM conference on Computer

and communications security, pages 309–320. ACM, 2011. doi:10.1145/2046707.2046742.

Kaspersky, E. Number of the Month: 70K per day. October 2011. Accessed on 1 March 2013.

URL http://eugene.kaspersky.com/2011/10/28/number-of-the-month-70k-per-day/

Katz, O. Detecting remote file inclusion attacks. White Paper. Breach Security Inc., May,

2009. Accessed: 14 May 2015.

URL https://www.owasp.org/images/6/67/OWASP_Israel_-_March_2009_-_

Or_Katz_-_RFI_detection.pdf

Kazanciyan, R. Old Web Shells, New Tricks. December 2012. Accessed: 14 June 2013.

URL https://www.owasp.org/images/c/c3/ASDC12-Old_Webshells_New_

Tricks_How_Persistent_Threats_haverevived_an_old_idea_and_how_you_

can_detect_them.pdf

Kienzle, D. M. and Elder, M. C. Recent worms: A survey and trends. In Proceedings of

the 2003 ACM Workshop on Rapid Malcode, WORM ’03, pages 1–10. ACM, New York, NY,

USA, 2003. ISBN 1-58113-785-0. doi:10.1145/948187.948189.

Kornblum, J. Identifying almost identical files using context triggered piecewise hashing. Digital

Investigation, 3:91–97, 2006.

Kornblum, J. Context Triggered Piecewise Hashes. July 2013. Accessed on 26 October 2013.

URL http://ssdeep.sourceforge.net/

REFERENCES 125

Landesman, M. Malware Revolution: A Change in Target. March 2007. Accessed: 16 June

2014.

URL http://technet.microsoft.com/en-us/library/cc512596.aspx

Li, J., Xu, M., Zheng, N., and Xu, J. Malware obfuscation detection via maximal patterns.

In Intelligent Information Technology Application, 2009. IITA 2009. Third International Sym-

posium on, volume 2, pages 324–328. IEEE, 2009.

Linn, C. and Debray, S. Obfuscation of Executable Code to Improve Resistance to Static

Disassembly. In ACM Conference on Computer and Communications Security, pages 290–

299. ACM Press, 2003.

Lu, G. and Debray, S. Automatic Simplification of Obfuscated JavaScript Code: A Semantics-

Based Approach. In Software Security and Reliability (SERE), 2012 IEEE Sixth International

Conference on, pages 31–40. June 2012. doi:10.1109/SERE.2012.13.

Madou, M., Van Put, L., and De Bosschere, K. Loco: An interactive code (de)obfuscation

tool. In Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-based Program Manipulation, PEPM ’06, pages 140–144. ACM, New York, NY,

USA, 2006. ISBN 1-59593-196-1. doi:10.1145/1111542.1111566.

McKinney, W. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.

O’Reilly Media, Inc., 2012. ISBN 1449319793.

McLaughlin, B. PHP & MySQL. Missing Manual. O’Reilly Media, Incorporated, 2012. ISBN

9781449325572.

Miller, R. PHP Apps A Growing Target for Hackers. January 2006. Accessed on 25 May

2013.

URL http://news.netcraft.com/archives/2006/01/31/php_apps_a_

growing_target_for_hackers.html

Moore, T. and Clayton, R. Evil searching: Compromise and Recompromise of Internet

Hosts for Phishing. In Financial Cryptography and Data Security, pages 256–272. Springer,

2009. ISBN 978-3-642-03548-7.

Moore, T. W. and Clayton, R. The impact of public information on phishing attack and

defense. Communications and Strategies, 81:45–68, 2011.

Nair, V. P., Jain, H., Golecha, Y. K., Gaur, M. S., and Laxmi, V. Medusa: Metamor-

phic malware dynamic analysis usingsignature from api. In Proceedings of the 3rd Interna-

tional Conference on Security of Information and Networks, SIN ’10, pages 263–269. ACM,

New York, NY, USA, 2010. doi:10.1145/1854099.1854152.

Oliphant, T. E. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006. ISBN

151730007X.

REFERENCES 126

Open Source Matters. What is Joomla? January 2013. Accessed on 25 May 2013.

URL http://www.joomla.org/about-joomla.html

Pfleeger, C. P. and Pfleeger, S. L. Security in Computing. Prentice Hall Professional

Technical Reference, 2002. ISBN 0132390779.

PHP Group. Output Control. Library reference website. Accessed on 16 August 2015.

URL http://php.net/manual/en/book.outcontrol.php

PHP Group. Basic Syntax. Library reference website, 2015a. Accessed on 22 May 2015.

URL http://php.net/manual/en/language.basic-syntax.php

PHP Group. Eval. Library reference website, 2015b. Accessed: 2 March 2015.

URL http://php.net/manual/en/function.eval.php

PHP Group. Function Reference. Library reference website, 2015c. Accessed on 22 May 2015.

URL http://www.php.net/manual/en/funcref.php

PHP Group. Installation and Configuration. Library reference website, 2015d. Accessed on

22 May 2015.

URL http://www.php.net/manual/en/install.php

PHP Group. PEAR - PHP Extension and Application Repository. Library reference website,

2015e. Accessed on 4 July 2015.

URL http://pear.php.net/

PHP Group. PECL. Library reference website, 2015f. Accessed on 22 May 2015.

URL http://pecl.php.net/

PHP Group. Preg Replace. Library reference website, 2015g. Accessed: 2 March 2015.

URL http://php.net/manual/en/function.preg-replace.php

PHP Group. Tokenizer. Library reference website, 2015h. Accessed: 2 March 2015.

URL http://php.net/manual/en/intro.tokenizer.php

PHP Group. Usage Stats for January 2013. Library reference website, 2015i. Accessed on 8

October 2015.

URL http://php.net/usage.php

PHP Group. What can PHP do? Library reference website, 2015j. Accessed on 15 February

2015.

URL http://www.php.net/manual/en/intro-whatcando.php

PHP Group. What is PHP? Library reference website, 2015k. Accessed on 27 May 2015.

URL http://www.php.net/manual/en/intro-whatis.php

REFERENCES 127

Preda, M. and Giacobazzi, R. Semantic-Based Code Obfuscation by Abstract Interpretation.

In Caires, L., Italiano, G., Monteiro, L., Palamidessi, C., and Yung, M., editors,

Automata, Languages and Programming, volume 3580 of Lecture Notes in Computer Science,

pages 1325–1336. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-27580-0. doi:10.1007/

11523468 107.

Python Software Foundation. Subprocess Management. Library reference website. Accessed:

27 October 2014.

URL https://docs.python.org/2/library/subprocess.html

Raber, J. and Laspe, E. Deobfuscator: An automated approach to the identification and

removal of code obfuscation. In wcre, pages 275–276. IEEE, 2007. doi:10.1109/WCRE.2007.18.

Rajaram, S. and Oono, Y. NeatMap - non-clustering heat map alternatives in R. BMC

Bioinformatics, 11(1):45, 2010. ISSN 1471-2105. doi:10.1186/1471-2105-11-45.

Roussev, V. An Evaluation of Forensic Similarity Hashes. Digital Investigation, 8:S34–S41,

2011.

Roussev, V. Scalable data correlation. In Eighth annual IFIP Working Group, volume 11.

2012.

Roussev, V. Sdhash Home. Package reference site, 2015. Accessed: 16 August 2015.

URL http://roussev.net/sdhash/sdhash.html

Roy, C. K. and Cordy, J. R. NICAD: Accurate detection of near-miss intentional clones

using flexible pretty-printing and code normalization. In Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on, pages 172–181. IEEE, 2008.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., and Bringas,

P. MAMA: Manifest Analysis for Malware Detection in Android. Cybernetics and Systems,

44:469–488, 2013.

Schroeder, W. J., Lorensen, B., and Martin, K. The Visualization Toolkit. Kitware,

2004. ISBN 193093419X.

Shankarapani, M. K., Ramamoorthy, S., Movva, R. S., and Mukkamala, S. Malware

Detection using Assembly and API Call Sequences. Journal in Computer Virology, 7(2):107–

119, 2011.

Sharif, M., Yegneswaran, V., Saidi, H., Porras, P., and Lee, W. Eureka: A Framework

for Enabling Static Malware Analysis. In Jajodia, S. and Lopez, J., editors, Computer

Security - ESORICS 2008, volume 5283 of Lecture Notes in Computer Science, pages 481–500.

Springer Berlin Heidelberg, 2008a. ISBN 978-3-540-88312-8. doi:10.1007/978-3-540-88313-5

31.

REFERENCES 128

Sharif, M. I., Lanzi, A., Giffin, J. T., and Lee, W. Impeding Malware Analysis Using

Conditional Code Obfuscation. In Network and Distributed System Security. 2008b.

Sklar, D. Learning PHP 5. O’Reilly Media, 2008. ISBN 9780596555351.

Slade, R. M. Software Forensics. Tata McGrawHill, 2004.

Sokal, R. R. and Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon,

11:33–40, 1962.

Sun, H.-M., Lin, Y.-H., and Wu, M.-F. API Monitoring System for Defeating Worms and

Exploits in MS-Windows System. In Batten, L. and Safavi-Naini, R., editors, Information

Security and Privacy, volume 4058 of Lecture Notes in Computer Science, pages 159–170.

Springer Berlin Heidelberg, 2006. ISBN 978-3-540-35458-1. doi:10.1007/11780656 14.

Suzumura, T., Trent, S., Tatsubori, M., Tozawa, A., and Onodera, T. Performance

Comparison of Web Service Engines in PHP, Java and C. In IEEE International Conference

on Web Services, pages 385–392. 2008. doi:10.1109/ICWS.2008.71.

Symantec Corporation. Glossary of Security Terms. 2015. Accessed: 14 July 2015.

URL http://www.symantec.com/security_response/glossary/define.jsp?

letter=t\&word=trojan-horse

Tatroe, K. Programming PHP. O’Reilly & Associates Inc, 2005. ISBN 0596006810.

Terry, P. Compiling with C# and Java. Pearson Education, 2005. ISBN 032126360X.

The Resource Index Online Network. The PHP Resource Index. January 2005. Accessed

on 24 May 2013.

URL http://php.resourceindex.com/

Titchkosky, L., Arlitt, M., and Williamson, C. A performance comparison of dynamic

Web technologies. SIGMETRICS Perform. Eval. Rev., 31(3):2–11, December 2003. ISSN

0163-5999. doi:10.1145/974036.974037.

Trent, S., Tatsubori, M., Suzumura, T., Tozawa, A., and Onodera, T. Performance

comparison of PHP and JSP as server-side scripting languages. In Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pages 164–

182. Springer-Verlag New York, Inc., New York, NY, USA, 2008. ISBN 3-540-89855-7.

Ullman, L. PHP for the world wide web: visual quickstart guide. Peachpit Press, 2004.

United States Computer Emergency Readiness Team. Compromised Web Servers and

Web Shells - Threat Awareness and Guidance. 2015. Accessed: 4 October 2015.

URL https://www.us-cert.gov/ncas/alerts/TA15-314A

REFERENCES 129

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. The numpy array: a structure for

efficient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

VirusTotal Team. VirusTotal Official Documentation. Service reference website, 2015a. Ac-

cessed: 16 June 2015.

URL https://www.virustotal.com/en/about/

VirusTotal Team. VirusTotal Private API. Service reference website, 2015b. Accessed: 16

June 2015.

URL https://www.virustotal.com/en/documentation/private-api/

VirusTotal Team. VirusTotal Public API. Service reference website, 2015c. Accessed: 16

June 2015.

URL https://www.virustotal.com/en/documentation/public-api/

Walenstein, A. and Lakhotia, A. The software similarity problem in malware analysis.

Internat. Begegnungs-und Forschungszentrum für Informatik, 2007. Accessed: February 2015.

URL http://drops.dagstuhl.de/opus/volltexte/2007/964/

Walenstein, A., Venable, M., Hayes, M., Thompson, C., and Lakhotia, A. Exploiting

similarity between variants to defeat malware. In Proc. BlackHat DC Conf. 2007. Accessed:

February 2015.

URL https://www.blackhat.com/presentations/bh-dc-07/Walenstein/

Paper/bh-dc-07-walenstein-WP.pdf

Wang, C. A security architecture for survivability mechanisms. Ph.D. thesis, University of

Virginia, 2001.

Wardman, B., Shukla, G., and Warner, G. Identifying vulnerable websites by analysis of

common strings in phishing URLs. In eCrime Researchers Summit, 2009. eCRIME’09., pages

1–13. IEEE, 2009.

Web Technology Surveys. Usage statistics and market share of PHP for websites. May 2013.

Accessed on 24 May 2013.

URL http://w3techs.com/technologies/details/pl-php/all/all

Wilkinson, L. and Friendly, M. The history of the cluster heat map. The American Statis-

tician, 63(2):179–184, 2009. doi:10.1198/tas.2009.0033.

URL http://dx.doi.org/10.1198/tas.2009.0033

Wrench, P. and Irwin, B. Towards a Sandbox for the Deobfuscation and Dissection of PHP

malware. In Information Security for South Africa (ISSA), 2014, pages 1–8. Aug 2014. doi:

10.1109/ISSA.2014.6950504.

REFERENCES 130

Wrench, P. and Irwin, B. A Sandbox-based Approach to the Deobfuscation and Dissection of

PHP-based Malware. South African Insitute of Electrical Engineers African Research Journal,

106:46–63, 2015a.

Wrench, P. and Irwin, B. Towards a PHP Webshell Taxonomy using Deobfuscation-assisted

Similarity Analysis. In Information Security for South Africa (ISSA), 2015. Aug 2015b. doi:

10.1109/ISSA.2014.6950504.

Wrench, P. and Irwin, B. Detecting Derivative Malware Samples using Deobfuscation-assisted

Similarity Analysis. South African Insitute of Electrical Engineers African Research Journal,

In Press, 2016.

Wu, A., Wang, H., and Wilkins, D. Performance Comparison of Alternative Solutions For

Web-To-Database Applications. In Proceedings of the Southern Conference on Computing,

pages 26–28. 2000.

You, I. and Yim, K. Malware obfuscation techniques: A brief survey. In 2010 International

conference on broadband, wireless computing, communication and applications, pages 297–300.

IEEE, 2010. doi:10.1109/BWCCA.2010.85.

Yujian, L. and Bo, L. A normalized Levenshtein distance metric. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 29(6):1091–1095, 2007.

Zaremski, A. M. and Wing, J. M. Signature matching: A key to reuse. In Proceedings of the

1st ACM SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT ’93, pages

182–190. ACM, New York, NY, USA, 1993a. ISBN 0-89791-625-5. doi:10.1145/256428.167077.

URL http://doi.acm.org/10.1145/256428.167077

Zaremski, A. M. and Wing, J. M. Signature matching: A key to reuse. ACM, 1993b.

Zend Technologies. The PHP Company. February 2013. Accessed on 24 May 2013.

URL http://www.zend.com/en/resources/

A
Antivirus Engines Aggregated by VirusTotal

AegisLab Comodo Malwarebytes Corporation

Agnitum Doctor Web Ltd McAfee Security

AhnLab ESTsoft Microsoft

Alibaba Group Emsi Software GmbH Microworld

Antiy Labs Eset Software Nano Security

ALWIL Fortinet Panda Security

Arcabit FRISK Software Qihoo 360

AVG Technologies F-Secure Rising Antivirus

Avira G DATA Software Sophos

BluePex Hacksoft SUPERAntiSpyware

Baidu Hauri Symantec Corporation

BitDefender GmbH Ikarus Software Tencent

Bkav Corporation INCA Internet ThreatTrack Security

ByteHero Information Security Jiangmin TotalDefense

Cat Computer Services K7 Computing Trend Micro

CMC InfoSec Kaspersky Lab VirusBlokAda

Cyren Kingsoft Zillya

ClamAV Lavasoft Zoner Software

131

B
Modules developed for the Viper Malware Analysis

Framework

Module Description

Decode.py Reveals code hidden by eval() or preg_replace() constructs

DecodeAll.py Decodes and normalises all samples

Dendrogram.py Creates a dendrogram representation of a specified similarity matrix

Download.py Submits and stores the results of malware retrieval requests

Fetch.py Submits and stores the results of malware search queries

FunctionBodies.py Extracts user-defined function bodies from a sample

FunctionBodiesAll.py Extracts user-defined function bodies from all samples

Functions.py Detects and extracts function names from a sample

FunctionsAll.py Detects and extracts function names from all samples

HashChunks.py Normalises, splits, and hashes a sample

HashChunksAll.py Normalises, splits, and hashes all samples

Heatmap.py Creates a heatmap representation of a specified similarity matrix

HtmlDump.py Dumps the HTML generated by a sample

HtmlDumpAll.py Dumps the HTML generated by all samples

Matrix.py Creates similarity matrices based on a given measure of similarity

132

C
Code Availability

Although segments of code from the components developed for this research were included

where necessary for the purposes of demonstration, the full listings were omitted brevity’s

sake. Copies of these listings are available online at https://github.com/Kalliades/Similarity-

Analysis/tree/PHP/modules.

133

